Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Nanoscale ; 16(14): 7154-7166, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38502569

Increasing energy demands and environmental problems require carbon-free and renewable energy generation systems. For this purpose, we have synthesized efficient photocatalysts (i.e., g-C3N4, Cu@g-C3N4, Ce@g-C3N4 and Cu/Ce@g-C3N4) for H2 evolution from water splitting. Their optical, structural and electrochemical properties were investigated by UV-Vis-DRS, PL, XRD, FTIR, Raman and EIS methods. Their surface morphologies were evaluated by AFM and SEM analyses. Their chemical characteristics, compositions and stability were assessed using XPS, EDX and TGA techniques. Photoreactions were performed in a quartz reactor (150 mL/Velp-UK), whereas hydrogen generation activities were monitored using a GC-TCD (Shimadzu-2014/Japan). The results depicted that Cu/Ce@g-C3N4 catalysts are the most active catalysts that deliver 23.94 mmol g-1 h-1 of H2. The higher rate of H2 evolution was attributed to the active synergism between Ce and Cu metals and the impact of surface plasmon electrons (SPEs) of Cu that were produced during the photoreaction. The rate of H2 production was optimized by controlling various factors, including the catalyst amount, light intensity, pH, and temperature of the reaction mixture. It has been concluded that the current study holds promise to replace the conventional and costly catalysts used for hydrogen generation technologies.

2.
Nanoscale Adv ; 5(12): 3233-3246, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-37325525

For future energy perspectives, an effective way to produce H2 from water splitting is suggested using Zn3V2O8 photocatalyst as a semiconductor support. Further, to enhance the catalytic efficiency and stability of the catalyst, gold metal was deposited over the Zn3V2O8 surface by a chemical reduction method. For comparison, the Zn3V2O8 and gold-fabricated catalysts (i.e., Au@Zn3V2O8) were used for water splitting reactions. For structural and optical properties, various techniques, including XRD, UV-Vis DRS, FTIR, PL, Raman, SEM, EDX, XPS and EIS were used for the characterizations. The scanning electron microscope revealed the pebble-shaped morphology of the Zn3V2O8 catalyst. The FTIR and EDX results confirmed the purity and structural and elemental composition of the catalysts. Overall, 7.05 mmol g-1 h-1 H2 generation was observed over Au1.0@Zn3V2O8, which was ten times higher than bare Zn3V2O8. The results revealed that the higher H2 activities could be attributed to the Schottky barriers and surface plasmon electrons (SPRs). Thus the Au@Zn3V2O8 catalysts have potential to deliver higher hydrogen generation than Zn3V2O8 by water splitting.

3.
Nanoscale Adv ; 5(12): 3247-3259, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-37325542

In this work, we report a synergism of Co/Na in Co@Na-BiVO4 microstructures to boost the photocatalytic performance of bismuth vanadate (BiVO4) catalysts. A co-precipitation method has been employed to synthesize blossom-like BiVO4 microstructures with incorporation of Co and Na metals, followed by calcination at 350 °C. The structure and morphology of the as-prepared photocatalysts are characterized by XRD, Raman, FTIR, SEM, EDX, AFM, UV-vis/DRS and PL techniques. Dye degradation activities are evaluated by UV-vis spectroscopy, in which methylene blue, Congo red and rhodamine B dyes are chosen for comparative study. The activities of bare BiVO4, Co-BiVO4, Na-BiVO4, and Co@Na-BiVO4 are compared. To evaluate the ideal conditions, various factors that affect degradation efficiencies have been investigated. The results of this study show that the Co@Na-BiVO4 photocatalysts exhibit higher activity than bare BiVO4, Co-BiVO4 or Na-BiVO4. The higher efficiencies were attributed to the synergistic role of Co and Na contents. This synergism assists in better charge separation and more electron transportation to the active sites during the photoreaction.

4.
Sci Rep ; 13(1): 6306, 2023 Apr 18.
Article En | MEDLINE | ID: mdl-37072442

In this work, sulphur doped copper ferrites (S-CuFe2O4) photocatalysts were successfully synthesized for the first time using the facile hydrothermal method. The as-synthesized photocatalysts were characterized through XRD, Raman, TGA, FT-IR, UV-Vis-DRS, SEM, EDX and PL techniques. The results revealed that doping with sulphur has been found to be a suitable alternative that causes strain in the lattices as anions replace the oxygen from the CuFe2O4 nanostructures. Due to sulphur dopants, photocatalysts are able to efficiently trap and transfer the photoinduced charges, which readily suppress charge recombination. A UV-Vis spectrophotometer was used to monitor the degradation of selective toxic organic dyes (RhB, CR, MO, and CV) in aqueous media. The dye degradation results provide evidence for the surprisingly superior performance of S-CuFe2O4 over pristine CuFe2O4. On the basis of its efficiencies, this work can be assigned as an excellent candidate for photocatalysis science.

5.
RSC Adv ; 13(4): 2379-2391, 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36741159

In this work, villi-microstructured Au-loaded BiVO4 photocatalysts were successfully synthesized by hydrothermal method. The as-synthesized photocatalysts were characterized by XRD, Raman, UV-Vis-DRS, PL, SEM and EDX techniques. The presence of metallic Au on the surface of Vm-BiVO4 support boosts the photocatalytic performance to degrade toxic crystal violet dye. The enhanced activities were attributed to the surface plasmon resonance (SPR) of Au which efficiently broadens the visible light response. SPR increases the electron population in Vm-BiVO4 and forms a Schottky barrier at the interface between Au and Vm-BiVO4 which enhances the separation efficiency of photoinduced charges. Various factors affecting photocatalytic degradation of crystal violet (CV) were studied to find optimum conditions. In addition, a radical trapping study indicates that ˙O2 - is the main active species in the degradation process of cationic CV dye. All photocatalytic degradation reactions were monitored by UV-Vis spectrophotometry (PerkinElmer/λ-365).

6.
Anim Cells Syst (Seoul) ; 24(6): 359-370, 2020 Nov 27.
Article En | MEDLINE | ID: mdl-33456720

Activin, a member of the transforming growth factor (TGF-ß) superfamily, induces mesoderm, endoderm and neuro-ectoderm formation in Xenopus embryos. Despite several previous studies, the complicated gene regulatory network and genes involved in this induction await more elaboration. We identified expression of various fibroblast growth factor (FGF) genes in activin/smad2 treated animal cap explants (AC) of Xenopus embryos. Activin/smad2 increased fgf3/8 expression, which was reduced by co-injection of dominant negative activin receptor (DNAR) and dominant negative Fgf receptor (DNFR). Interestingly, activin/smad2 also increased expression of dual specificity phosphatase 1 (dusp1) which has been known to inhibit Fgf signaling. Dusp1 overexpression in dorsal marginal zone caused gastrulation defect and decreased Jnk/Erk phosphorylation as well as Smad1 linker region phosphorylation. Dusp1 decreased neural and organizer gene expression with increasing of endodermal and ventral gene expression in smad2 treated AC, indicating that dusp1 modulates germ layer specification. Dusp1 decreased neural gene expression in fgf8 treated AC, suggesting that Erk and/or Jnk phosphorylation may be involved in fgf8 induced neural induction. In addition, dusp1 decreased the reporter gene activities of activin response element (ARE) and increased it for bmp response element (BRE), indicating that dusp1 modulates two opposite morphogen signaling of dorsal (activin/Smad2) and ventral (bmp/Smad1) tracks, acting to fine tune the Fgf/Erk pathway.

7.
Environ Monit Assess ; 191(11): 650, 2019 Oct 17.
Article En | MEDLINE | ID: mdl-31624906

Fruits are important components of human diet, and their contamination by environmental pollutants is an emerging challenge nowadays. The present study is based on the measurement of selected essential and toxic trace metals including Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Cr, Co, Sr, Li, Ni, Pb, and Cd in commercially available citrus fruits from Pakistan. The samples were digested in HNO3 and HCLO4 mixture, and the metal contents were quantified by flame atomic absorption spectrometry. Highest concentration was found for Ca (609.0-3596 mg/kg), followed by relatively higher levels of K (277.6-682.1 mg/kg), Mg (53.65-123.4 mg/kg), Na (1.173-52.14 mg/kg), and Fe (0.236-10.57 mg/kg), while Li, Ni, and Cd showed the lowest contributions in most of the samples. In addition, antioxidant activities such as DPPH radical scavenging assay, hydroxyl radical scavenging activity, ferrous chelating activity, ferric reducing antioxidant power assay, and phosphomolybdenum assay were also evaluated in the fruit samples. Considerably higher antioxidant activities were shown by grapefruit, mandarin, sweet lime, and tangerine. Most of the antioxidant assays were significantly correlated with Na, Mg, Fe, Mn, and Cu levels in the fruits. Human health risk was evaluated in terms of health risk index (HRI), target hazard quotient (THQ), and target cancer risk (TCR) which revealed insignificant health risks; thus, the consumption of these fruits can be considered as safe for human diet.


Antioxidants/analysis , Citrus/chemistry , Environmental Monitoring/methods , Environmental Pollutants/analysis , Metals, Heavy/analysis , Trace Elements/analysis , Fruit/chemistry , Humans , Pakistan , Risk Assessment , Spectrophotometry, Atomic
8.
Mol Cells ; 41(12): 1061-1071, 2018 Dec 31.
Article En | MEDLINE | ID: mdl-30590909

From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.


Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Xenopus Proteins/genetics , Xenopus laevis/genetics , Animals , Cell Differentiation , Nervous System , Signal Transduction , Xenopus Proteins/metabolism
9.
Chemistry ; 23(24): 5631-5651, 2017 Apr 27.
Article En | MEDLINE | ID: mdl-27862482

Nano- (or micro-scale) metal-organic frameworks (NMOFs), also known as coordination polymer particles (CPPs), have received much attention because of their structural diversities and tunable properties. Besides the direct use, NMOFs can be alternatively used as sacrificial templates/precursors for the preparation of a wide range of hybrid inorganic nanomaterials in straightforward and controllable manners. Distinct advantages of using NMOF templates are correlated to their structural and functional tailorability at molecular levels that is rarely acquired in any other conventional template/precursor. In addition, NMOF-derived inorganic nanomaterials with distinct chemical and physical properties are inferred to dramatically expand the scope of their utilization in many fields. In this review, we aim to provide readers with a comprehensive summary of recent progress in terms of synthetic approaches for the production of diverse inorganic hybrid nanostructures from as-synthesized NMOFs and their promising applications.

...