RESUMEN
The attractive biological properties and health benefits of natural astaxanthin (AXT), including its antioxidant and anti-carcinogenic properties, have garnered significant attention from academia and industry seeking natural alternatives to synthetic products. AXT, a red ketocarotenoid, is mainly produced by yeast, microalgae, wild or genetically engineered bacteria. Unfortunately, the large fraction of AXT available in the global market is still obtained using non-environmentally friendly petrochemical-based products. Due to the consumers concerns about synthetic AXT, the market of microbial-AXT is expected to grow exponentially in succeeding years. This review provides a detailed discussion of AXT's bioprocessing technologies and applications as a natural alternative to synthetic counterparts. Additionally, we present, for the first time, a very comprehensive segmentation of the global AXT market and suggest research directions to improve microbial production using sustainable and environmentally friendly practices. KEY POINTS: ⢠Unlock the power of microorganisms for high value AXT production. ⢠Discover the secrets to cost-effective microbial AXT processing. ⢠Uncover the future opportunities in the AXT market.
Asunto(s)
Antioxidantes , Ingeniería Genética , Xantófilas , LevadurasRESUMEN
Microwaves have been applied to the drying of seeds of several species due to their maintenance of the quality of the seeds and reduction of time and costs. However, few is known about the effect of microwaves on the increase of the physiological quality of soybean seeds and especially their effects on longevity. Therefore, the use of microwaves as magneto-priming in soybean seeds was the object of study in this work. For this purpose, two soybean cultivars were selected and submitted to the ultra-high frequency (UHF) microwave exposure of 2.45 GHz, in the wavelength of 11 cm, and power of 0.2 W/g, for 15 min. The results showed that this condition of exposure to the microwave brought benefits in both cultivars after treatment. Incremental improvements were observed in the germinability indexes, the seedling length, the water absorption by the seeds, the fresh mass, dry mass, and longevity. The genes related to seed germination and longevity showed superior expression (HSFA3, HSP21, HSP17.6b, EXP, ABI3) with magneto-priming treatment. The data found ensure the use of the technique as a viable option for pre-treatment as magneto-priming in soybean seeds in order to improve seed quality.
RESUMEN
Astaxanthin (AXT) is a natural xanthophyll with strong antioxidant, anticancer and antimicrobial activities, widely used in the food, feed, pharmaceutical and nutraceutical industries. So far, 95% of the AXT global market is produced by chemical synthesis, but growing customer preferences for natural products are currently changing the market for natural AXT, highlighting the production from microbially-based sources such as the yeast Phaffia rhodozyma. The AXT production by P. rhodozyma has been studied for a long time at a laboratory scale, but its use in industrial-scale processes is still very scarce. The optimization of growing conditions as well as an effective integration of upstream-downstream operations into P. rhodozyma-based AXT processes has not yet been fully achieved. With this critical review, we scrutinized the main approaches for producing AXT using P. rhodozyma strains, highlighting the impact of using conventional and non-conventional procedures for the extraction of AXT from yeast cells. In addition, we also pinpointed research directions, for example, the use of low-cost residues to improve the economic and environmental sustainability of the bioprocess, the use of environmentally/friendly and low-energetic integrative operations for the extraction and purification of AXT, as well as the need of further human clinical trials using yeast-based AXT.
Asunto(s)
Basidiomycota , Saccharomyces cerevisiae , Humanos , Xantófilas , Biotecnología , Basidiomycota/químicaRESUMEN
Microorganisms such as bacteria, microalgae and fungi, are natural and rich sources of several valuable bioactive antioxidant's compounds, including carotenoids. Among the carotenoids with antioxidant properties, astaxanthin can be highlighted due to its pharmaceutical, feed, food, cosmetic and biotechnological applications. The best-known producers of astaxanthin are yeast and microalgae cells that biosynthesize this pigment intracellularly, requiring efficient and sustainable downstream procedures for its recovery. Conventional multi-step procedures usually involve the consumption of large amounts of volatile organic compounds (VOCs), which are regarded as toxic and hazardous chemicals. Considering these environmental issues, this review is focused on revealing the potential of unconventional extraction procedures [viz., Supercritical Fluid Extraction (SFE), Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE), High-Pressure Homogenization (HPH)] combined with alternative green solvents (biosolvents, eutectic solvents and ionic liquids) for the recovery of microbial-based astaxanthin from microalgae (such as Haematococcus pluvialis) and yeast (such as Phaffia rhodozyma) cells. The principal advances in the area, process bottlenecks, solvent selection and strategies to improve the recovery of microbial astaxanthin are emphasized. The promising recovery yields using these environmentally friendly procedures in lab-scale are good indications and directions for their effective use in biotechnological processes for the production of commercial feed and food ingredients like astaxanthin.
Asunto(s)
Antioxidantes , Microalgas , Biomasa , Saccharomyces cerevisiae , Carotenoides , Solventes/químicaRESUMEN
This research investigated the bioactive potential of jaboticaba peel extract (JPE) and proposed an innovative material for food packaging based on carrageenan films incorporated with JPE. The extract was obtained through microwave assisted extraction (MAE) according to central composite rotational design and the optimized conditions showed a combined antimicrobial and antioxidant actions when the extraction process is accomplished at 80 °C and 1 min. The carrageenan film incorporated with JPE was manageable, homogeneous and the presence of JPE into film increased the thickness and improved the light barrier of the film. The results of solubility and mechanical properties did not show significant differences. The benefit of using MAE to improve the recovery of bioactive compounds was demonstrated and the carrageenan film with JPE showed a great strategy to add additives into food packaging.
Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Carragenina/farmacología , Embalaje de Alimentos/métodos , Myrtaceae/química , Extractos Vegetales/farmacología , Carragenina/químicaRESUMEN
Carrageenan-based active packaging film was prepared by adding olive leaf extract (OLE) as a bioactive agent to the lamb meat packaging. The OLE was characterized in terms of its phenolic compounds (T.ph), antioxidant activity (AA), oleuropein, and minimum inhibitory concentration (MIC) against Escherichia coli. The film's formulation consisted of carrageenan, glycerol as a plasticizer, water as a solvent, and OLE. The effects of the OLE on the thickness, water vapor permeability (WVP), tensile strength (TS), elongation at break (EB), elastic modulus (EM), color, solubility, and antimicrobial capacity of the carrageenan film were determined. The OLE had the following excellent characteristics: the T.ph value was 115.96 mgGAEâg-1 (d.b), the AA was 89.52%, the oleuropein value was 11.59 mgâg-1, and the MIC was 50 mgâmL-1. The results showed that the addition of OLE increased the thickness, EB, and WVP, and decreased the TS and EM of the film. The solubility was not significantly affected by the OLE. The color difference with the addition of OLE was 64.72%, which had the benefit of being a barrier to oxidative processes related to light. The film with the OLE was shown to have an antimicrobial capacity during the storage of lamb meat, reducing the count of psychrophiles five-fold when compared to the samples packed by the control and commercial films; therefore, this novel film has the potential to increase the shelf life of lamb meat, and as such, is suitable for use as active packaging.