Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Pain ; 7: 14, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21314936

RESUMEN

BACKGROUND: Increased neuronal excitability and spontaneous firing are hallmark characteristics of injured sensory neurons. Changes in expression of various voltage-gated Na+ channels (VGSCs) have been observed under neuropathic conditions and there is evidence for the involvement of protein kinase C (PKC) in sensory hyperexcitability. Here we demonstrate the contribution of PKC to P2X-evoked VGSC activation in dorsal root ganglion (DRG) neurons in neuropathic conditions. RESULTS: Using the spinal nerve ligation (SNL) model of neuropathic pain and whole-cell patch clamp recordings of dissociated DRG neurons, we examined changes in excitability of sensory neurons after nerve injury and observed that P2X3 purinoceptor-mediated currents induced by α,ß-meATP triggered activation of TTX-sensitive VGSCs in neuropathic nociceptors only. Treatment of neuropathic DRGs with the PKC blocker staurosporine or calphostin C decreased the α,ß-meATP-induced Na+ channels activity and reversed neuronal hypersensitivity. In current clamp mode, α,ß-meATP was able to evoke action-potentials more frequently in neuropathic neurons than in controls. Pretreatment with calphostin C significantly decreased the proportion of sensitized neurons that generated action potentials in response to α,ß-meATP. Recordings measuring VGSC activity in neuropathic neurons show significant change in amplitude and voltage dependence of sodium currents. In situ hybridization data indicate a dramatic increase in expression of embryonic Nav1.3 channels in neuropathic DRG neurons. In a CHO cell line stably expressing the Nav1.3 subunit, PKC inhibition caused both a significant shift in voltage-dependence of the channel in the depolarizing direction and a decrease in current amplitude. CONCLUSION: Neuropathic injury causes primary sensory neurons to become hyperexcitable to ATP-evoked P2X receptor-mediated depolarization, a phenotypic switch sensitive to PKC modulation and mediated by increased activity of TTX-sensitive VGSCs. Upregulation in VGSC activity after injury is likely mediated by increased expression of the Nav1.3 subunit, and the function of the Nav1.3 channel is regulated by PKC.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteína Quinasa C/metabolismo , Receptores Purinérgicos P2X/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Humanos , Hibridación in Situ , Masculino , Canal de Sodio Activado por Voltaje NAV1.3 , Naftalenos/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Estaurosporina/farmacología
2.
Lancet Neurol ; 9(4): 413-24, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298965

RESUMEN

Voltage-gated sodium channels (VGSCs) are key mediators of intrinsic neuronal and muscle excitability. Abnormal VGSC activity is central to the pathophysiology of epileptic seizures, and many of the most widely used antiepileptic drugs, including phenytoin, carbamazepine, and lamotrigine, are inhibitors of VGSC function. These antiepileptic drugs might also be efficacious in the treatment of other nervous system disorders, such as migraine, multiple sclerosis, neurodegenerative diseases, and neuropathic pain. In this Review, we summarise the structure and function of VGSCs and their involvement in the pathophysiology of several neurological disorders. We also describe the biophysical and molecular bases for the mechanisms of action of antiepileptic VGSC blockers and discuss the efficacy of these drugs in the treatment of epileptic and non-epileptic disorders. Overall, clinical and experimental data indicate that these drugs are efficacious for a range of diseases, and that the development of drugs with enhanced selectivity for specific VGSC isoforms might be an effective and novel approach for the treatment of several neurological diseases.


Asunto(s)
Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Bloqueadores de los Canales de Sodio/uso terapéutico , Canales de Sodio/metabolismo , Animales , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo
3.
J Neuropathol Exp Neurol ; 67(7): 687-701, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18596544

RESUMEN

In limbic seizures, neuronal excitation is conveyed from the entorhinal cortex directly to CA1 and subicular regions. This phenomenon is associated with a reduced ability of CA3 to respond to entorhinal cortex inputs. Here, we describe a lesion that destroys the perforant path in CA3 after status epilepticus (SE) induced by pilocarpine injection in 8-week-old rats. Using magnetic resonance imaging, immunohistochemical, and ultrastructural analyses, we determined that this lesion develops after 30 minutes of SE and is characterized by microhemorrhages and ischemia. After a longer period of SE, the lesion invariably involves the upper blade of the dentate gyrus. Adult rats treated with subcutaneous diazepam (20 mg kg for 3 days) did not develop the dentate gyrus lesion and had less frequent spontaneous recurrent seizures (p < 0.01). Young (3-week-old) rats rarely (20%) developed the CA3 lesion, and their spontaneous seizures were delayed (p < 0.01). To investigate the role of the damaged CA3 in seizure activity, we reinduced SE in adult and young epileptic rats. Using FosB/DeltaFosB markers, we found induction of FosB/DeltaFosB immunopositivity in CA3 neurons of young but not in adult rats. These experiments indicate that SE can produce a focal lesion in the perforant path that may affect the roles of the hippocampus in epileptic rats.


Asunto(s)
Lesiones Encefálicas/patología , Corteza Entorrinal/patología , Hipocampo/patología , Estado Epiléptico/patología , Factores de Edad , Animales , Animales Recién Nacidos , Anticonvulsivantes/uso terapéutico , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/tratamiento farmacológico , Diazepam/uso terapéutico , Modelos Animales de Enfermedad , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido , Hemo-Oxigenasa 1/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Laminina/metabolismo , Imagen por Resonancia Magnética/métodos , Masculino , Microscopía Electrónica de Transmisión/métodos , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/patología , Vías Nerviosas/ultraestructura , Pilocarpina , Proteínas Proto-Oncogénicas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Intercambio de Guanina Nucleótido Rho , Estado Epiléptico/inducido químicamente , Estado Epiléptico/complicaciones , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/prevención & control
4.
Brain Res Rev ; 58(1): 149-59, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18342948

RESUMEN

Voltage-gated sodium channels comprise pore-forming alpha subunits and auxiliary beta subunits. Nine different alpha subtypes, designated Nav1.1-Nav1.9 have been identified in excitable cells. Nav1.1, 1.2 and 1.6 are major subtypes in the adult mammalian brain. More than 200 mutations in the Nav1.1 alpha subtype have been linked to inherited epilepsy syndromes, ranging in severity from the comparatively mild disorder Generalized Epilepsy with Febrile Seizures Plus to the epileptic encephalopathy Severe Myoclonic Epilepsy of Infancy. Studies using heterologous expression and functional analysis of recombinant Nav1.1 channels suggest that epilepsy mutations in Nav1.1 may cause either gain-of-function or loss-of-function effects that are consistent with either increased or decreased neuronal excitability. How these diverse effects lead to epilepsy is poorly understood. This review summarizes the data on sodium channel mutations and epilepsy and builds a case for the hypothesis that most Nav1.1 mutations have their ultimate epileptogenic effects by reducing Nav1.1-mediated whole cell sodium currents in GABAergic neurons, resulting in widespread loss of brain inhibition, an ideal background for the genesis of epileptic seizures.


Asunto(s)
Epilepsia/genética , Mutación , Proteínas del Tejido Nervioso/genética , Canales de Sodio/genética , Animales , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Epilepsia/metabolismo , Epilepsia Generalizada/genética , Epilepsia Generalizada/metabolismo , Predisposición Genética a la Enfermedad/genética , Humanos , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Convulsiones Febriles/genética , Convulsiones Febriles/metabolismo , Canales de Sodio/metabolismo , Canales de Sodio/fisiología
5.
Epilepsy Res ; 64(3): 77-84, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15922564

RESUMEN

The antiepileptic drug phenytoin inhibits voltage-gated sodium channels. Phenytoin block is enhanced at depolarized membrane potentials and during high frequency channel activation. These properties, which are important for the clinical efficacy of the drug, depend on voltage-dependent channel gating. In this study, we examined the action of phenytoin on sodium channels, comprising a mutant auxiliary beta1 subunit (mutation C121Wbeta1), which causes the inherited epilepsy syndrome, generalized epilepsy with febrile seizures plus (GEFS+). Whole cell sodium currents in Chinese hamster ovary (CHO) cells coexpressing human Na(v)1.3 sodium channels and C121Wbeta1 exhibited altered gating properties, compared to currents in cells coexpressing Na(v)1.3 and wild type beta1. In addition mutant channels were less sensitive to inhibition by phenytoin, showing reduced tonic block at -70mV (EC(50)=26microM for C121Wbeta1 versus 11microM for wild type beta1) and less frequency-dependent inhibition in response to a 20Hz pulse train ( approximately 40% inhibition for C121Wbeta1 versus approximately 70% inhibition for wild type beta1, with 50microM phenytoin). Mutant and wild type channels did not differ in inactivated state affinity for phenytoin, suggesting that their pharmacological differences were secondary to their differences in voltage-dependent gating, rather than being caused by direct effects of the mutation on the drug receptor. Together, these data show that a sodium channel mutation responsible for epilepsy can also alter channel response to antiepileptic drugs.


Asunto(s)
Epilepsia/genética , Mutación/efectos de los fármacos , Mutación/genética , Fenitoína/farmacología , Canales de Sodio/genética , Animales , Células CHO , Cricetinae , Epilepsia/tratamiento farmacológico , Humanos , Canal de Sodio Activado por Voltaje NAV1.3 , Proteínas del Tejido Nervioso/genética , Fenitoína/uso terapéutico , Subunidad beta-1 de Canal de Sodio Activado por Voltaje
6.
Biophys J ; 89(3): 1731-43, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15980164

RESUMEN

Ba(2+) currents through Ca(V)1.2 Ca(2+) channels are typically twice as large as Ca(2+) currents. Replacing Phe-1144 in the pore-loop of domain III with glycine and lysine, and Tyr-1152 with lysine, reduces whole-cell G(Ba)/G(Ca) from 2.2 (wild-type) to 0.95, 1.21, and 0.90, respectively. Whole-cell and single-channel measurements indicate that reductions in G(Ba)/G(Ca) result specifically from a decrease in Ba(2+) conductance and not changes in V(h) or P(O). Half-maximal block of I(Li) is increased by 3.2-, 3.8-, and 1.6-fold in Ca(2+), and 3.8-, 4.2-, and 1.8-fold in Ba(2+) for F1144G, Y1152K, and F1144K, respectively. High affinity interactions of individual divalent cations to the pore are not important for determining G(Ba)/G(Ca), because the fold increases in IC(50) values for Ba(2+) and Ca(2+) are similar. On the contrary, conductance-concentration curves indicate that G(Ba)/G(Ca) is reduced because the interactions of multiple Ba(2+) ions in the mutant pores are altered. The complexity of these interactions is exemplified by the anomalous mole fraction effect, which is flattened for F1144G and FY/GK but accentuated for F1144K. In summary, the physicochemical properties of the amino acid residues at positions 1144 and 1152 are crucial to the pore's ability to distinguish between multiple Ba(2+) ions and Ca(2+) ions.


Asunto(s)
Bario/química , Canales de Calcio Tipo L/fisiología , Canales de Calcio/química , Calcio/química , Secuencia de Aminoácidos , Transporte Biológico , Calcio/metabolismo , Canales de Calcio Tipo L/química , Cationes , Cationes Bivalentes , Línea Celular , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Glutámico/química , Glicina/química , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Activación del Canal Iónico , Iones , Cinética , Lisina/química , Potenciales de la Membrana , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Fenilalanina/química , Unión Proteica , Estructura Terciaria de Proteína , Tirosina/química
7.
J Pharmacol Exp Ther ; 309(1): 193-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14718587

RESUMEN

Mibefradil is a Ca2+ channel antagonist that inhibits both T-type and high-voltage-activated Ca2+ channels. We previously showed that block of high-voltage-activated channels by mibefradil occurs through the production of an active metabolite by intracellular hydrolysis. In the present study, we modified the structure of mibefradil to develop a nonhydrolyzable analog, (1S, 2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride (NNC 55-0396), that exerts a selective inhibitory effect on T-type channels. The acute IC(50) of NNC 55-0396 to block recombinant alpha(1)G T-type channels in human embryonic kidney 293 cells was approximately 7 microM, whereas 100 microM NNC 55-0396 had no detectable effect on high-voltage-activated channels in INS-1 cells. NNC 55-0396 did not affect the voltage-dependent activation of T-type Ca2+ currents but changed the slope of the steady-state inactivation curve. Block of T-type Ca2+ current was partially relieved by membrane hyperpolarization and enhanced at a high-stimulus frequency. Washing NNC 55-0396 out of the recording chamber did not reverse the T-type Ca2+ current activity, suggesting that the compound dissolves in or passes through the plasma membrane to exert its effect; however, intracellular perfusion of the compound did not block T-type Ca2+ currents, arguing against a cytoplasmic route of action. After incubating cells from an insulin-secreting cell line (INS-1) with NNC 55-0396 for 20 min, mass spectrometry did not detect the mibefradil metabolite that causes L-type Ca2+ channel inhibition. We conclude that NNC 55-0396, by virtue of its modified structure, does not produce the metabolite that causes inhibition of L-type Ca2+ channels, thus rendering it more selective to T-type Ca2+ channels.


Asunto(s)
Bencimidazoles/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/metabolismo , Ciclopropanos/farmacología , Naftalenos/farmacología , Animales , Bencimidazoles/síntesis química , Bencimidazoles/química , Bloqueadores de los Canales de Calcio/síntesis química , Bloqueadores de los Canales de Calcio/química , Canales de Calcio Tipo T/efectos de los fármacos , Canales de Calcio Tipo T/fisiología , Línea Celular , Células Cultivadas , Ciclopropanos/síntesis química , Ciclopropanos/química , Electrofisiología , Humanos , Espectrometría de Masas , Mibefradil/química , Mibefradil/farmacología , Naftalenos/síntesis química , Naftalenos/química , Ratas
8.
Epilepsia ; 44(12): 1601-4, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14636336

RESUMEN

PURPOSE: Spontaneous seizures in rats emerge several weeks after induction of status epilepticus with pharmacologic treatment or electrical stimulation, providing an animal model for human temporal lobe epilepsy. In this study, we investigated whether status epilepticus caused changes in the function of voltage-gated sodium channels in entorhinal cortex layer V neurons, a cellular group important for the genesis of limbic seizures. METHODS: We induced status epilepticus in rats, by using lithium-pilocarpine, and then 2-12 weeks later, used whole-cell voltage-clamp to examine voltage-activated sodium currents of acutely dissociated layer V neurons. RESULTS: Transient sodium currents of entorhinal cortex layer V neurons isolated from 9- to 12-week post-status epilepticus rats were similar to currents in age-matched controls; however, low-threshold persistent sodium currents were significantly larger. This increase in persistent activity was not seen 2-3 weeks after pilocarpine treatment; thus it occurred after a delay comparable to the delay in the appearance of spontaneous seizures. CONCLUSIONS: Increased persistent currents are expected to accentuate neuronal excitability and thus may contribute to the genesis of spontaneous seizures after status epilepticus.


Asunto(s)
Corteza Entorrinal/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Canales de Sodio/fisiología , Estado Epiléptico/fisiopatología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Corteza Entorrinal/efectos de los fármacos , Epilepsia del Lóbulo Temporal/inducido químicamente , Excitación Neurológica/fisiología , Cloruro de Litio , Masculino , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Pilocarpina , Ratas , Ratas Long-Evans , Canales de Sodio/efectos de los fármacos , Estado Epiléptico/inducido químicamente
9.
Biophys J ; 85(5): 3019-34, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14581203

RESUMEN

The kinetic diversity of burst openings responsible for the persistent Na(+) current (I(NaP)) in entorhinal cortex neurons was examined by separately analyzing single bursts. Although remarkable kinetic variability was observed among bursts in terms of intraburst opening probability and mean open and closed times, the values of time constants describing intraburst open times (tau(o(b))s) and closed times (tau(c(b))s) were distributed around well-defined peaks. At -40 mV, tau(o(b)) peaks were found at approximately 0.34 (tau(o(b))1) and 0.77 (tau(o(b))2) ms, and major tau(c(b)) peaks were found at approximately 0.24 (tau(c(b))1) and 0.54 (tau(c(b))2) ms. In approximately 80% of the bursts two preferential gating modes were found that consisted of a combination of either tau(o(b))1 and tau(c(b))2 ("intraburst mode 1"), or tau(o(b))2 and tau(c(b))1 ("intraburst mode 2"). Individual channels could switch between different gating modalities, but normally tended to maintain a specific gating mode for long periods. Mean burst duration also displayed considerable variability. At least three time constants were found to describe burst duration, and the frequencies at which each of the corresponding "bursting states" occurred varied in different channels. Short-lasting bursting states were preferentially associated with intraburst mode 1, whereas very-long-lasting bursts tended to gate according to mode 2 only or other modes that included considerably longer mean open times. These results show that I(NaP) channels can generate multiple intraburst open and closed states and bursting states, but these different kinetic states tend to combine in definite ways to produce a limited number of prevalent, well-defined gating modalities. Modulation of distinct gating modalities in individual Na(+) channels may be a powerful form of plasticity to influence neuronal excitability and function.


Asunto(s)
Potenciales de Acción/fisiología , Permeabilidad de la Membrana Celular/fisiología , Corteza Entorrinal/fisiología , Activación del Canal Iónico/fisiología , Modelos Neurológicos , Neuronas/fisiología , Canales de Potasio/fisiología , Sodio/metabolismo , Adaptación Fisiológica/fisiología , Animales , Relojes Biológicos/fisiología , Células Cultivadas , Cinética , Potenciales de la Membrana/fisiología , Modelos Estadísticos , Ratas , Ratas Long-Evans
10.
Neuroreport ; 14(10): 1353-6, 2003 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-12876472

RESUMEN

Batrachotoxin causes sustained opening of voltage-gated sodium channels. Toxin binds irreversibly to wild type channels; however, it dissociates rapidly from channels with mutation F1710C in transmembrane segment IVS6. This dissociation requires channel activation, suggesting that the activation gate guards the toxin-binding site. Here we show that activity-dependent toxin dissociation was not affected by external sodium, arguing against a binding site within the pore, and demonstrate that dissociation occurred only during the first few milliseconds after membrane depolarization, as if the toxin leaves its binding site during closed states that precede the final open state in the activation pathway. Toxin interaction with preopen states may facilitate subsequent channel opening, thus accounting for the batrachotoxin-induced negative shift in channel activation.


Asunto(s)
Batracotoxinas/farmacología , Canales de Sodio/fisiología , Animales , Sitios de Unión/fisiología , Cisteína/genética , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Conductividad Eléctrica , Estimulación Eléctrica , Espacio Extracelular , Femenino , Potenciales de la Membrana/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Oocitos , Farmacocinética , Fenilalanina/genética , Estructura Terciaria de Proteína , Ratas , Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Canales de Sodio/genética , Factores de Tiempo , Xenopus
11.
Epilepsy Res ; 53(1-2): 107-17, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12576172

RESUMEN

Mutations in the alpha 1 subunit of the voltage-gated sodium channel (SCN1A) have been increasingly recognized as an important cause of familial epilepsy in humans. However, the functional consequences of these mutations remain largely unknown. We identified a mutation (D188V) in SCN1A segregating with generalized epilepsy with febrile seizures (GEFS) in a large kindred. Compared to wild-type sodium channels, in vitro expression of channels harboring the D188V mutation were found to be more resistant to the decline in amplitude that is normally observed over the course of high frequency pulse trains. This small change on a single aspect of channel function is compatible with an increase in membrane excitability, such as during sustained and uncontrolled neuronal discharges. These data suggest that this specific effect on sodium channel function could be a general mechanism in the pathophysiology of epilepsies caused by mutations in sodium channels in humans.


Asunto(s)
Epilepsia Generalizada/genética , Fiebre/fisiopatología , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Convulsiones/genética , Canales de Sodio/genética , Animales , Membrana Celular/fisiología , Electrofisiología , Epilepsia Generalizada/fisiopatología , Humanos , Potenciales de la Membrana/fisiología , Mutagénesis , Canal de Sodio Activado por Voltaje NAV1.1 , Fenotipo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Convulsiones/fisiopatología , Canales de Sodio/fisiología
12.
J Neurosci ; 22(24): 10699-709, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12486163

RESUMEN

Generalized epilepsy with febrile seizures plus type 1 is an inherited human epileptic syndrome, associated with a cysteine-to-tryptophan (C121W) mutation in the extracellular immunoglobin domain of the auxiliary beta1 subunit of the voltage-gated sodium channel. The mutation disrupts beta1 function, but how this leads to epilepsy is not understood. In this study, we make several observations that may be relevant for understanding why this beta1 mutation results in seizures. First, using electrophysiological recordings from mammalian cell lines, coexpressing sodium channel alpha subunits and either wild-type beta1 or C121Wbeta1, we show that loss of beta1 functional modulation, caused by the C121W mutation, leads to increased sodium channel availability at hyperpolarized membrane potentials and reduced sodium channel rundown during high-frequency channel activity, compared with channels coexpressed with wild-type beta1. In contrast, neither wild-type beta1 nor C121Wbeta1 significantly affected sodium current time course or the voltage dependence of channel activation. We also show, using a Drosophila S2 cell adhesion assay, that the C121W mutation disrupts beta1-beta1 homophilic cell adhesion, suggesting that the mutation may alter the ability of beta1 to mediate protein-protein interactions critical for sodium channel localization. Finally, we demonstrate that neither functional modulation nor cell adhesion mediated by wild-type beta1 is occluded by coexpression of C121Wbeta1, arguing against the idea that the mutant beta1 acts as a dominant-negative subunit. Together, these data suggest that C121Wbeta1 causes subtle effects on channel function and subcellular distribution that bias neurons toward hyperexcitabity and epileptogenesis.


Asunto(s)
Mutación Puntual , Canales de Sodio/genética , Canales de Sodio/fisiología , Animales , Células CHO , Adhesión Celular , Agregación Celular , Línea Celular , Células Cultivadas , Cricetinae , Drosophila/citología , Conductividad Eléctrica , Epilepsia Generalizada/genética , Predisposición Genética a la Enfermedad , Humanos , Cinética , Potenciales de la Membrana , Oocitos/metabolismo , Técnicas de Placa-Clamp , Subunidades de Proteína , Ratas , Convulsiones Febriles/genética , Canales de Sodio/análisis , Síndrome , Subunidad beta-1 de Canal de Sodio Activado por Voltaje , Xenopus
13.
Mol Pharmacol ; 61(4): 905-12, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11901230

RESUMEN

Batrachotoxin (BTX), from South American frogs of the genus Phyllobates, irreversibly activates voltage-gated sodium channels. Previous work demonstrated that a phenylalanine residue approximately halfway through pore-lining transmembrane segment IVS6 is a critical determinant of channel sensitivity to BTX. In this study, we introduced a series of mutations at this site in the Na(v)1.3 sodium channel, expressed wild-type and mutant channels in Xenopus laevis oocytes, and examined their sensitivity to BTX using voltage clamp recording. We found that substitution of either alanine or isoleucine strongly reduced channel sensitivity to toxin, whereas cysteine, tyrosine, or tryptophan decreased toxin action only modestly. These data suggest an electrostatic ligand-receptor interaction at this site, possibly involving a charged tertiary amine on BTX. We then used a mutant channel (mutant F1710C) with intermediate toxin sensitivity to examine the properties of the toxin-receptor reaction in more detail. In contrast to wild-type channels, which bind BTX almost irreversibly, toxin dissociation from mutant channels was rapid, but only when the channels were open, not when they were closed. These data suggest the closed activation gate trapped bound toxin. Although BTX dissociation required channel activation, it was, paradoxically, slowed by strong membrane depolarization, suggesting additional state-dependent and/or electrostatic influences on the toxin binding reaction. We propose that BTX moves to and from its receptor through the cytoplasmic end of the open ion-conducting pore, in a manner similar to that of quaternary local anesthetics like QX314.


Asunto(s)
Batracotoxinas/farmacología , Canales de Sodio/metabolismo , Sustitución de Aminoácidos , Aminoácidos , Animales , Cisteína/metabolismo , Expresión Génica/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Oocitos , Fenilalanina/genética , Conformación Proteica , Canales de Sodio/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA