Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Microbiol Spectr ; 12(1): e0315023, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38099614

RESUMEN

IMPORTANCE: Accurate taxonomy is essential for microbial biological resource centers, since the microbial resources are often used to support new discoveries and subsequent research. Here, we used genome sequence data, alongside matrix-assisted laser desorption/ionization time-of-flight mass spectrometer biotyper-based protein profiling, to accurately identify six Enterobacter cloacae complex strains. This approach effectively identified distinct species within the E. cloacae complex, including Enterobacter asburiae, "Enterobacter xiangfangensis," and Enterobacter quasihormaechei. Moreover, the study revealed the existence of a novel species within the Enterobacter genus, for which we proposed the name Enterobacter pasteurii sp. nov. In summary, this study demonstrates the significance of adopting a genome sequence-driven taxonomy approach for the precise identification of bacterial strains in a biological resource center and expands our understanding of the E. cloacae complex.


Asunto(s)
Enterobacter , Enterobacter/genética , Filogenia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Curr Top Med Chem ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37711006

RESUMEN

Biologically active secondary metabolites, essential oils, and volatile compounds derived from medicinal and aromatic plants play a crucial role in promoting human health. Within the large family Asteraceae, the genus Artemisia consists of approximately 500 species. Artemisia species have a rich history in traditional medicine worldwide, offering remedies for a wide range of ailments, such as malaria, jaundice, toothache, gastrointestinal problems, wounds, inflammatory diseases, diarrhoea, menstrual pains, skin disorders, headache, and intestinal parasites. The therapeutic potential of Artemisia species is derived from a multitude of phytoconstituents, including terpenoids, phenols, flavonoids, coumarins, sesquiterpene lactones, lignans, and alkaloids that serve as active pharmaceutical ingredients (API). The remarkable antimalarial, antimicrobial, anthelmintic, antidiabetic, anti-inflammatory, anticancer, antispasmodic, antioxidative and insecticidal properties possessed by the species are attributed to these APIs. Interestingly, several commercially utilized pharmaceutical drugs, including arglabin, artemisinin, artemether, artesunate, santonin, and tarralin have also been derived from different Artemisia species. However, despite the vast medicinal potential, only a limited number of Artemisia species have been exploited commercially. Further, the available literature on traditional and pharmacological uses of Artemisia lacks comprehensive reviews. Therefore, there is an urgent need to bridge the existing knowledge gaps and provide a scientific foundation for future Artemisia research endeavours. It is in this context, the present review aims to provide a comprehensive account of the traditional uses, phytochemistry, documented biological properties and toxicity of all the species of Artemisia and offers useful insights for practitioners and researchers into underutilized species and their potential applications. This review aims to stimulate further exploration, experimentation and collaboration to fully realize the therapeutic potential of Artemisia in augmenting human health and well-being.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37199717

RESUMEN

Three bacterial strains, 1AS11T, 1AS12 and 1AS13, members of the new symbiovar salignae and isolated from root nodules of Acacia saligna grown in Tunisia, were characterized using a polyphasic approach. All three strains were assigned to the Rhizobium leguminosarum complex on the basis of rrs gene analysis. Phylogenetic analysis based on 1734 nucleotides of four concatenated housekeeping genes (recA, atpD, glnII and gyrB) showed that the three strains were distinct from known rhizobia species of the R. leguminosarum complex and clustered as a separate clade within this complex. Phylogenomic analysis of 92 up-to-date bacterial core genes confirmed the unique clade. The digital DNA-DNA hybridization and blast-based average nucleotide identity values for the three strains and phylogenetically related Rhizobium species ranged from 35.9 to 60.0% and 87.16 to 94.58 %, which were lower than the 70 and 96% species delineation thresholds, respectively. The G+C contents of the strains were 60.82-60.92 mol% and the major fatty acids (>4 %) were summed feature 8 (57.81 %; C18 : 1 ω7c) and C18 : 1 ω7c 11-methyl (13.24%). Strains 1AS11T, 1AS12 and 1AS13 could also be differentiated from their closest described species (Rhizobium indicum, Rhizobium laguerreae and Rhizobium changzhiense) by phenotypic and physiological properties as well as fatty acid content. Based on the phylogenetic, genomic, physiological, genotypic and chemotaxonomic data presented in this study, strains 1AS11T, 1AS12 and 1AS13 represent a new species within the genus Rhizobium and we propose the name Rhizobium acaciae sp. nov. The type strain is 1AS11T (=DSM 113913T=ACCC 62388T).


Asunto(s)
Acacia , Rhizobium , Acacia/genética , Ácidos Grasos/química , Filogenia , Túnez , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Nucleótidos
5.
World J Microbiol Biotechnol ; 39(6): 160, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37067647

RESUMEN

Secretion of quorum sensing (QS) molecules is important for the effective colonization of host plants by plant growth-promoting rhizobacteria. The current study aims at the isolation and characterization of tea rhizo bacteria, which produce the QS molecules, acyl homoserine lactone (AHLs), along with multiple plant growth-promoting (PGP) activities. Thirty-one isolates were isolated from the tea rhizosphere, and screening for PGP activities resulted in the selection of isolates RTE1 and RTE4 with multiple PGP traits, inhibiting the growth of tea fungal pathogens. Both isolates also showed production of AHL molecules when screened using two biosensor strains, Chromobacterium violaceum CV026 and Escherichia coli MT 102(jb132). The isolates identified as Burkholderia cepacia RTE1 and Pseudomonas aeruginosa RTE4 based on genome-based analysis like phylogeny, dDDH, and fastANI calculation. Detailed characterization of AHLs produced by the isolates using reverse-phase TLC, fluorometry, and LC-MS indicated that the isolate RTE1 produced a short chain, C8, and a long chain C12 AHL, while RTE4 produced short-chain AHLs C4 and C6. Confocal microscopy revealed the formation of thick biofilm by RTE1 and RTE4 (18 and 23 µm, respectively). Additionally, we found several genes involved in QS, and PGP, inducing systemic resistance (ISR) activities such as lasI/R, qscR, pqq, pvd, aldH, acdS, phz, Sod, rml, and Pch, and biosynthetic gene clusters like N-acyl homoserine lactone synthase, terpenes, pyochelin, and pyocyanin. Based on the functional traits like PGP, biofilm formation and production of AHL molecules, and genetic potential of the isolates B. cepacia RTE1 and P. aeruginosa RTE4 appear promising candidates to improve the health and growth of tea plantations.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Percepción de Quorum/genética , Biopelículas , Pseudomonas aeruginosa/genética , Genómica ,
6.
Int Microbiol ; 26(2): 257-267, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36378397

RESUMEN

Indian lotus (Nelumbo nucifera) is one of the dominant aquatic plants cultivated in Dal Lake, situated at 1586 m above mean sea level (MSL) in the northeast of Srinagar, Kashmir. Despite their economic and ecological role, the microbial communities associated with the lotus plant are still unexplored. In this study, we investigated the prokaryotic communities on surfaces of different lotus microhabitats (roots, rhizome, leaves, flowers, and fruits), lake water, and sediments using 16S rRNA gene amplicon sequencing. Overall, prokaryotic diversity decreased significantly on the surface of lotus microhabitats in comparison to the lake water and sediments. Among the microhabitats of lotus, roots and leaves harbored more diverse communities in comparison to rhizomes, fruits, and flowers. A total of 98 genera were shared by lotus and the Dal Lake sediments and water. However, significant differences were found in their relative abundance; for example, Pseudomonas was the most dominant genus on the majority of lotus microhabitats. On the other hand, Flavobacterium was highly abundant in the lake water, while a higher abundance of Acinetobacter was recorded in sediments. Additionally, we also noted the presence of potential human pathogenic genera including Escherichia-Shigella, Enterobacter, Pantoea, Raoultella, Serratia, and Sphingomonas on the lotus microhabitats. Predicted functions of prokaryotic communities revealed a higher abundance of genes associated with nutrient uptake in the microhabitats of the lotus. This study offered first-hand information on the prokaryotic communities harbored by lotus plants and water and sediments of the Dal Lake and demonstrated the adaptation of diverse communities to microhabitats of lotus.


Asunto(s)
Nelumbo , Humanos , Nelumbo/genética , Lagos , ARN Ribosómico 16S/genética , Altitud , Agua
8.
Biology (Basel) ; 11(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35625360

RESUMEN

The genus Shewanella is widely distributed in niches ranging from an aquatic environment to spoiled fish and is loaded with various ecologically and commercially important metabolites. Bacterial species under this genus find application in bioelectricity generation and bioremediation due to their capability to use pollutants as the terminal electron acceptor and could produce health-beneficial omega-3 fatty acids, particularly eicosapentaenoic acid (EPA). Here, the genome sequence of an EPA-producing bacterium, Shewanella sp. N2AIL, isolated from the gastrointestinal tract of Tilapia fish, is reported. The genome size of the strain was 4.8 Mb with a GC content of 46.3% containing 4385 protein-coding genes. Taxonogenomic analysis assigned this strain to the genus Shewanella on the basis of average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH), phylogenetically most closely related with S. baltica NCTC 10735T. The comparative genome analysis with the type strain of S. baltica revealed 693 unique genes in the strain N2AIL, highlighting the variation at the strain level. The genes associated with stress adaptation, secondary metabolite production, antibiotic resistance, and metal reduction were identified in the genome suggesting the potential of the bacterium to be explored as an industrially important strain. PUFA synthase gene cluster of size ~20.5 kb comprising all the essential domains for EPA biosynthesis arranged in five ORFs was also identified in the strain N2AIL. The study provides genomic insights into the diverse genes of Shewanella sp. N2AIL, which is particularly involved in adaptation strategies and prospecting secondary metabolite potential, specifically the biosynthesis of omega-3 polyunsaturated fatty acids.

9.
Front Microbiol ; 13: 845853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479643

RESUMEN

Due to industrialization, the contamination of toxic metals in soils is currently one of the major concerns to scientists worldwide. The presence of high concentrations of heavy metals including cadmium in the environment is mainly attributed to human activities. Being a highly toxic metal, cadmium can enter plant cell transporters usually used for the uptake of essential cations, such as iron, calcium, and zinc. This study deals with the appraisement of response and tolerance shown by various bacteria in varied cadmium concentrations (100-1,000 ppm). The optical density (OD) of the isolates was measured to determine the minimum inhibitory concentration (MIC) of cadmium. Isolated bacteria have been identified using 16S rRNA gene sequence and Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Among the 72 isolates, 07 (Bacillus pumilus, Enterobacter kobei, Klebsiella pneumonia, Pseudomonas mandelii, Pseudomonas putida, Pseudomonas avellanae, and Staphylococcus equorum), isolates had efficacy for cadmium tolerance and showed sequestration potential at varying MIC. Furthermore, K. pneumonia was observed to have the highest (900 ppm) tolerance for cadmium and the lowest (600 ppm) was shown by E. kobei. Besides, K. pneumonia showed the highest (75.2%) sequestration potential while the least (52.4%) potential was observed for P. putida. These cadmium tolerant species can be implemented in contaminated environments for detoxification and elimination of cadmium from these agricultural fields. Graphical Abstract.

10.
FEMS Microbiol Ecol ; 98(2)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35142840

RESUMEN

Fenugreek (Trigonella foenum-graecum Linn.), is an extensively cultivated legume crop used as a herb, spice, and traditional medicine in India. The symbiotic efficiency and plant growth-promoting potential of fenugreek rhizobia depend on the symbiont strain and environmental factors. We isolated 176 root-nodulating bacteria from fenugreek cultivated in different agroclimatic regions of India. MALDI-TOF MS-based identification and phylogenetic analyses based on 16S rRNA and five housekeeping genes classified the fenugreek-rhizobia as Ensifer (Sinorhizobium) meliloti. However, the strains represent separate sub-lineages of E. meliloti, distinct from all reported sub-lineages across the globe. We also observed the spatial distribution of fenugreek rhizobia, as the three sub-lineages of E. meliloti recorded during this study were specific to their respective agroclimatic regions. According to the symbiotic gene (nodC and nifH) phylogenies, all three sub-lineages of E. meliloti harboured symbiotic genes similar to symbiovar meliloti; as with the housekeeping genes, these also revealed a spatial distribution for different clades of sv. meliloti. The strains could nodulate fenugreek plants and they showed plant growth-promoting potential. Significant differences were found in the plant growth parameters in response to inoculation with the various strains, suggesting strain-level differences. This study demonstrates that fenugreek rhizobia in India are diverse and spatially distributed in different agro-climatic regions.


Asunto(s)
Rhizobium , Trigonella , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética , Trigonella/genética , Trigonella/microbiología
12.
Microorganisms ; 9(9)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576846

RESUMEN

Bioconversion of lignocellulose into renewable energy and commodity products faces a major obstacle of inefficient saccharification due to its recalcitrant structure. In nature, lignocellulose is efficiently degraded by some insects, including termites and beetles, potentially due to the contribution from symbiotic gut bacteria. To this end, the presented investigation reports the isolation and characterization of cellulolytic bacteria from the gut system of red flour beetle, Tribolium castaneum. Out of the 15 isolated bacteria, strain RSP75 showed the highest cellulolytic activities by forming a clearance zone of 28 mm in diameter with a hydrolytic capacity of ~4.7. The MALDI-TOF biotyping and 16S rRNA gene sequencing revealed that the strain RSP75 belongs to Bacillus altitudinis. Among the tested enzymes, B. altitudinis RSP75 showed maximum activity of 63.2 IU/mL extract for xylanase followed by ß-glucosidase (47.1 ± 3 IU/mL extract) which were manifold higher than previously reported activities. The highest substrate degradation was achieved with wheat husk and corn cob powder which accounted for 69.2% and 54.5%, respectively. The scanning electron microscopy showed adhesion of the bacterial cells with the substrate which was further substantiated by FTIR analysis that depicted the absence of the characteristic cellulose bands at wave numbers 1247, 1375, and 1735 cm-1 due to hydrolysis by the bacterium. Furthermore, B. altitudinis RSP75 showed co-culturing competence with Saccharomyces cerevisiae for bioethanol production from lignocellulose as revealed by GC-MS analysis. The overall observations signify the gut of T. castaneum as a unique and impressive reservoir to prospect for lignocellulose-degrading bacteria that can have many biotechnological applications, including biofuels and biorefinery.

13.
Arch Microbiol ; 203(6): 3591-3604, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33966089

RESUMEN

A novel bacterial strain designated as ADMK78T was isolated from the saline desert soil. The cells were rod-shaped, Gram-stain-negative, and non-motile. The strain ADMK78T grows best at 28 °C. Phylogeny of 16S rRNA gene placed the strain ADMK78T with the members of genera Ciceribacter and Rhizobium, while the highest sequence similarity was with Rhizobium wuzhouense W44T (98.7%) and Rhizobium ipomoeae shin9-1 T (97.9%). Phylogenetic analysis based on 92 core-genes extracted from the genome sequences and average amino acid identity (AAI) revealed that the strain ADMK78T forms a distinct cluster including five species of Rhizobium, which is separate from the cluster of the genera Rhizobium and Ciceribacter. We propose re-classification of Rhizobium ipomoeae, R. wuzhouense, R. rosettiformans and R. rhizophilum into the novel genus Peteryoungia. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of ADMK78T were less than 82 and 81%, respectively, among all type strains included in the genus Peteryoungia. The strain ADMK78T showed differences in physiological, phenotypic, and protein profiles estimated by MALDI-TOF MS to its closest relatives. Based on the phenotypic, chemotaxonomic properties, and phylogenetic analyses, the strain ADMK78T represents a novel species, Peteryoungia desertarenae sp. nov. The type strain is ADMK78T (= MCC 3400T; KACC 21383T; JCM 33657T). We also proposed the reclassification of Rhizobium daejeonense, R. naphthalenivorans and R. selenitireducens, into the genus Ciceribacter, based on core gene phylogeny and AAI values.


Asunto(s)
Rhizobiaceae/clasificación , Filogenia , ARN Ribosómico 16S/genética , Rhizobiaceae/genética , Rhizobium/clasificación , Microbiología del Suelo
14.
Genes (Basel) ; 12(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477547

RESUMEN

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano , Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN
15.
Curr Microbiol ; 77(12): 4072-4084, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33079205

RESUMEN

Pangong Tso is a long and narrow lake situated at an altitude of ~ 4266 m amsl in the Himalayan Plateau on the side of the India/China border. Biofilm has been observed in a small area near the shore of Pangong Tso. Bacterial communities of the lake sediment, water and biofilms were studied using amplicon sequencing of V3-V4 region of the 16S rRNA gene. The standard QIIME pipeline was used for analysis. The metabolic potential of the community was predicted using functional prediction tool Tax4Fun. Bacterial phyla Proteobacteria, followed by Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Firmicutes, were found to be dominant across these samples. Shannon's and Simpson's alpha diversity analysis revealed that sediment communities are the most diverse, and water communities are the least diverse. Principal Coordinates based beta diversity analysis showed significant variation in the bacterial communities of the water, sediment and biofilm samples. Bacterial phyla Verrucomicrobia, Deinococcus-Thermus and Cyanobacteria were explicitly enriched in the biofilm samples. Predictive functional profiling of these bacterial communities showed a higher abundance of genes involved in photosynthesis, biosynthesis of secondary metabolites, carbon fixation in photosynthetic organisms and glyoxylate and dicarboxylate metabolism in the biofilm sample. In conclusion, the Pangong Tso bacterial communities are quite similar to other saline and low-temperature lakes in the Tibetan Plateau. Bacterial community structure of the biofilm samples was significantly different from that of the water and sediment samples and enrichment of saprophytic communities was observed in the biofilm samples, indicating an important succession event in this high-altitude lake.


Asunto(s)
Altitud , Sedimentos Geológicos , Biodiversidad , Biopelículas , China , India , Lagos , ARN Ribosómico 16S/genética , Aguas Salinas
16.
Syst Appl Microbiol ; 43(5): 126127, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32847793

RESUMEN

Three strains of rhizobia isolated from effective root nodules of pea (Pisum sativum L.) collected from the Indian trans-Himalayas were characterized using 16S rRNA, atpD and recA genes. Phylogeny of the 16S rRNA genes revealed that the newly isolated strains were members of the genus Rhizobium with ≥99.9% sequence similarity to the members within the "Rhizobium leguminosarum" group. Phylogenetic analyses based on the concatenated sequences of atpD and recA gene, and 92 core genes extracted from the genome sequences indicated that strains JKLM 12A2T and JKLM 13E are grouped as a separate clade closely related to R. laguerreae FB206T. In contrast, the strain JKLM 19E was placed with "R. hidalgonense" FH14T. Whole-genome average nucleotide identity (ANI) values were 97.6% within strains JKLM 12A2T and JKLM 13E, and less than 94% with closely related species. The digital DNA-DNA hybridization (dDDH) values were 81.45 within the two strains and less than 54.8% to closely related species. The major cellular fatty acids were C18:1w7c in summed feature 8, C14:0 3OH/C16:1 iso I in summed feature 2, and C18:0. The DNA G+C content of JKLM 12A2T and JKLM 13E was 60.8mol%. The data on genomic, chemotaxonomic, and phenotypic characteristics indicates that the strains JKLM 12A2T and JKLM 13E represent a novel species, Rhizobium indicum sp. nov. The type strain is JKLM 12A2T (= MCC 3961T=KACC 21380T=JCM 33658T). However, the strain JKLM 19E represents a member of "R. hidalgonense" and the symbiovar viciae.


Asunto(s)
Pisum sativum/microbiología , Rhizobium/clasificación , Rhizobium/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Productos Agrícolas/microbiología , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genes Bacterianos , Genes de ARNr , Genoma Bacteriano , Genómica , India , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/fisiología , Rhizobium leguminosarum/genética , Análisis de Secuencia de ADN , Simbiosis
17.
Artículo en Inglés | MEDLINE | ID: mdl-32850725

RESUMEN

Tea is an ancient non-alcoholic beverage plantation crop cultivated in the most part of Assam, India. Being a long-term monoculture, tea plants are prone to both biotic and abiotic stresses, and requires massive amounts of chemicals as fertilizers and pesticides to achieve worthy crop productivity. The rhizosphere bacteria with the abilities to produce phytohormone, secreting hydrolytic enzyme, biofilm formation, bio-control activity provides induced systemic resistance to plants against pathogens. Thus, plant growth promoting (PGP) rhizobacteria represents as an alternative candidate to chemical inputs for agriculture sector. Further, deciphering the secondary metabolites, including biosurfactant (BS) allow developing a better understanding of rhizobacterial strains. The acidic nature of tea rhizosphere is predominated by Bacillus followed by Pseudomonas that enhances crop biomass and yield through accelerating uptake of nutrients. In the present study, a strain Pseudomonas aeruginosa RTE4 isolated from tea rhizosphere soil collected from Rosekandy Tea Garden, Cachar, Assam was evaluated for various plant-growth promoting attributes. The strain RTE4 produces indole acetic acid (74.54 µg/ml), hydrolytic enzymes, and solubilize tri-calcium phosphate (46 µg/ml). Bio-control activity of RTE4 was recorded against two foliar fungal pathogens of tea (Corticium invisium and Fusarium solani) and a bacterial plant pathogen (Xanthomonas campestris). The strain RTE4 was positive for BS production in the preliminary screening. Detailed analytical characterization through TLC, FTIR, NMR, and LCMS techniques revealed that the strain RTE4 grown in M9 medium with glucose (2% w/v) produce di-rhamnolipid BS. This BS reduced surface tension of phosphate buffer saline from 71 to 31 mN/m with a critical micelle concentration of 80 mg/L. Purified BS of RTE4 showed minimum inhibitory concentration of 5, 10, and 20 mg/ml against X. campestris, F. solani and C. invisium, respectively. Capability of RTE4 BS to be employed as a biofungicide as compared to Carbendazim - commercially available fungicide is also tested. The strain RTE4 exhibits multiple PGP attributes along with production of di-rhamnolipid BS. This gives a possibility to produce di-rhamnolipid BS from RTE4 in large scale and explore its applications in fields as a biological alternative to chemical fertilizer.

18.
Saudi J Biol Sci ; 27(8): 2047-2053, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32714029

RESUMEN

Toxic metal contamination in soils due industrialization is nowadays a concern to the scientists worldwide. The current study deals with the evaluation of response and tolerance by isolated metallophilic bacteria in different lead concentrations (100 ppm to 1000 ppm). By taking optical densities of the isolates, the minimum inhibitory concentration (MIC) of Pb2+ were determined.16S rRNA and MALDI-TOF MS were used for the identification of the bacteria. Total of 37 isolates were observed, among them 04 (Staphylococcus equorum, Staphylococcus warneri, Bacillus safensis and Bacillus thuringiensis), isolated were detected having efficacy of Pb2+tolerance and sequestration at varying MIC. Furthermore, B. thuringiensis was observed to have highest (900 ppm) tolerance for lead and lowest (500 ppm) for Staphylococcus warneri. Moreover, the highest (65.3%) sequestration potential has been observed for B. thuringiensis and least (52.8%) for S. warneri. The tolerance and sequestration potential properties of these isolated species can be utilised to exterminate heavy metals and reduce their toxicity from the contaminated environment.

19.
Front Microbiol ; 11: 968, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582047

RESUMEN

Rhizosphere microbiome significantly influences plant growth and productivity. Legume crops such as pea have often been used as a rotation crop along with rice cultivation in long-term conservation agriculture experiments in the acidic soils of the northeast region of India. It is essential to understand how the pea plant influences the soil communities and shapes its rhizosphere microbiome. It is also expected that the long-term application of nutrients and tillage practices may also have a lasting effect on the rhizosphere and soil communities. In this study, we estimated the bacterial communities by 16S rRNA gene amplicon sequencing of pea rhizosphere and bulk soils from a long-term experiment with multiple nutrient management practices and different tillage history. We also used Tax4Fun to predict the functions of bacterial communities. Quantitative polymerase chain reaction (qPCR) was used to estimate the abundance of total bacterial and members of Firmicutes in the rhizosphere and bulk soils. The results showed that bacterial diversity was significantly higher in the rhizosphere in comparison to bulk soils. A higher abundance of Proteobacteria was recorded in the rhizosphere, whereas the bulk soils have higher proportions of Firmicutes. At the genus level, proportions of Rhizobium, Pseudomonas, Pantoea, Nitrobacter, Enterobacter, and Sphingomonas were significantly higher in the rhizosphere. At the same time, Massilia, Paenibacillus, and Planomicrobium were more abundant in the bulk soils. Higher abundance of genes reported for plant growth promotion and several other genes, including iron complex outer membrane receptor, cobalt-zinc-cadmium resistance, sigma-70 factor, and ribonuclease E, was predicted in the rhizosphere samples in comparison to bulk soils, indicating that the pea plants shape their rhizosphere microbiome, plausibly to meet its requirements for nutrient uptake and stress amelioration.

20.
Int J Syst Evol Microbiol ; 70(5): 3278-3286, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32375936

RESUMEN

A novel bacterial strain, designated TOUT106T, was isolated from the surface of a tomato. The cells were rod-shaped, Gram-negative, encapsulated and non-motile. Strain TOUT106T grows best at 28 °C and pH 7.0 and can tolerate up to 2 % (w/v) NaCl. Based on 16S rRNA gene phylogeny, strain TOUT106T was placed close to the Salmonella clade, with close similarity to Salmonella enterica subsp. arizonae strain NCTC 8297T (98.42 %). Results of genome-based phylogenetic analysis revealed that strain TOUT106T is placed well in the Klebsiella-Raoultella clade, by forming a distinct branch with Klebsiella michiganensis DSM25444T, Klebsiella oxytoca NCTC132727T, Klebsiella grimontii 06D021T and Klebsiella pasteurii SB6412T. The genomic DNA G+C content of strain TOUT106T is 53.53 mol%. The average nucleotide identity values of TOUT106T were less than 86.5 % with closely related members of the family Enterobacteriaceae. The major fatty acids of strain TOUT106T were C16 : 0, C17:0 cyclo, C14:0 3OH/C16:1 iso, C14 : 0, C19:0 cyclo ω8c, C18:1 ω6c/C18:1 ω7c, C12 : 0 and C16:1 ω7c/C16:1 ω6c. Strain TOUT106T showed differences in physiological, phenotypic and protein profiles by MALDI-TOF MS compared to its closest relatives. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain TOUT106T could be distinguished from the recognized species of the genus Klebsiella. It is suggested to represent a novel species of this genus, for which the name Klebsiella indica sp. nov. is proposed. The type strain is TOUT106T (=MCC 2901T=KACC 21384T=JCM 33718T).


Asunto(s)
Frutas/microbiología , Klebsiella/clasificación , Filogenia , Solanum lycopersicum/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , India , Klebsiella/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...