Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 3162-3170, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194287

RESUMEN

In this work, a simple green synthesis method of the novel metal-organic framework (MOF) nanocomposite PCN-224/Au-NPs (Au-NPs = gold nanoparticles) is described. In this regard, initially, PCN-224 was synthesized. Afterward, in a single-step, one-pot procedure, under visible-light irradiation, Au-NPs were fabricated on PCN-224. The cytotoxicity effect of the synthesized PCN-224/Au-NPs nanocomposite was investigated in human colon cancer cells. Determination of the apoptosis induction was done by the Annexin- V/propidium iodide flow cytometry method. Besides, to ascertain the biocompatibility of the synthesized sample, the cytotoxicity of PCN-224/Au-NPs was evaluated on the human embryonic kidney (HEK)-293 cell line. The substantial anticancer activity with the biocompatibility of the structure, the green facile synthesis, and the MOF surface of the synthesized nanocomposite make it special for utilization in therapeutic applications.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas del Metal , Estructuras Metalorgánicas , Humanos , Oro/farmacología , Oro/química , Circonio/farmacología , Circonio/química , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Células HEK293 , Neoplasias Colorrectales/tratamiento farmacológico
3.
RSC Adv ; 13(35): 24617-24627, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37601598

RESUMEN

During the drug release process, the drug is transferred from the starting point in the drug delivery system to the surface, and then to the release medium. Metal-organic frameworks (MOFs) potentially have unique features to be utilized as promising carriers for drug delivery, due to their suitable pore size, high surface area, and structural flexibility. The loading and release of various therapeutic drugs through the MOFs are effectively accomplished due to their tunable inorganic clusters and organic ligands. Since the drug release rate percentage (RES%) is a significant concern, a quantitative structure-property relationship (QSPR) method was applied to achieve an accurate model predicting the drug release rate from MOFs. Structure-based descriptors, including the number of nitrogen and oxygen atoms, along with two other adjusted descriptors, were applied for obtaining the best multilinear regression (BMLR) model. Drug release rates from 67 MOFs were applied to provide a precise model. The coefficients of determination (R2) for the training and test sets obtained were both 0.9999. The root mean square error for prediction (RMSEP) of the RES% values for the training and test sets were 0.006 and 0.005, respectively. To examine the precision of the model, external validation was performed through a set of new observations, which demonstrated that the model works to a satisfactory degree.

4.
Sci Rep ; 13(1): 8580, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237037

RESUMEN

In this research, the one-step synthesis of novel porphyrin-based nanocomposites was performed easily using a photochemical under visible light illumination strategy. As a result, the focus of this research is on synthesizing and using decorated ZnTPP (zinc(II)tetrakis(4-phenyl)porphyrin) nanoparticles with Ag, Ag/AgCl/Cu, and Au/Ag/AgCl nanostructures as antibacterial agents. Initially, ZnTPP NPs were synthesized as a result of the self-assembly of ZnTPP. In the next step, in a visible-light irradiation photochemically process, the self-assembled ZnTPP nanoparticles were used to make ZnTPP/Ag NCs, ZnTPP/Ag/AgCl/Cu NCs, and ZnTPP/Au/Ag/AgCl NCs. A study on the antibacterial activity of nanocomposites was carried out for Escherichia coli, and Staphylococcus aureus as pathogen microorganisms by the plate count method, well diffusion tests, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) values determination. Thereafter, the reactive oxygen species (ROS) were determined by the flow cytometry method. All the antibacterial tests and the flow cytometry ROS measurements were carried out under LED light and in dark. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to investigate the cytotoxicity of the ZnTPP/Ag/AgCl/Cu NCs, against Human foreskin fibroblast (HFF-1) normal cells. Due to the specific properties such as admissible photosensitizing properties of porphyrin, mild reaction conditions, high antibacterial properties in the presence of LED light, crystal structure, and green synthesis, these nanocomposites were recognized as kinds of antibacterial materials that are activated in visible light, got the potential for use in a broad range of medical applications, photodynamic therapy, and water treatment.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Humanos , Especies Reactivas de Oxígeno , Nanocompuestos/química , Fotosíntesis , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química
5.
Front Mol Biosci ; 10: 1071376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091862

RESUMEN

Cu-BTC framework has received a considerable attention in recent years as a drug carrier candidate for cancer treatment due to its unique structural properties and promising biocompatibility. However, its intrinsic deficiency for medical imaging potentially limits its bioapplications; To address this subject, a magnetic nano/microscale MOF has been successfully fabricated by introducing Fe3O4 nanoparticles as an imaging agent into the porous isoreticular MOF [Cu3(BTC)2] as a drug carrier. The synthesized magnetic MOFs exhibits a high loading capacity (40.5%) toward the model anticancer DOX with an excellent pH-responsive drug release. The proposed nanocomposite not only possesses large surface area, high magnetic response, large mesopore volume, high transverse relaxivity (r 2) and good stability but also exhibits superior biocompatibility, specific tumor cellular uptake, and significant cancer cell viability inhibitory effect without any targeting agent. It is expected that the synthesized magnetic nano/microcomposite may be used for clinical purposes and can also serve as a platform for photoactive antibacterial therapy ae well as pH/GSH/photo-triple-responsive nanocarrier.

6.
ACS Omega ; 7(45): 40869-40881, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406500

RESUMEN

A reliable quantitative structure-property relationship (QSPR) model was established for predicting the evolution rate of CO2 photoreduction over porphyrin-based metal-organic frameworks (MOFs) as photocatalysts. The determination coefficient (R 2) for both training and test sets was 0.999. The root-mean-squared error of prediction (RMSEP) obtained was 0.006 and 0.005 for training and test sets, respectively. Based on the proposed model, two porphyrin-based MOFs, Cu-PMOF and Co-PMOF, were designed, synthesized, and applied for CO2 photoreduction under UV-visible irradiation without any additional photosensitizer. The X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), and Fourier transform infrared (FTIR) measurements revealed the successful formation of the porous MOFs. The N2 adsorption isotherms at 77 K showed a high Brunauer-Emmett-Teller (BET) surface area of 932.64 and 974.06 m2·g-1 for Cu-PMOF and Co-PMOF, respectively. Theoretical and experimental results showed that HCOOH evolution rates over Cu-PMOF and Co-PMOF were (127.80, 101.62 µmol) and (130.6, 103.47 µmol), respectively. These results were robust and satisfactory.

7.
Sci Rep ; 12(1): 17121, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224275

RESUMEN

This study focuses on synthesizing novel nanocomposites, zinc(II)tetrakis(4-phenyl)porphyrin/Cu nanoparticles (ZnTPP/Cu-NPs),with antibacterial activity, fabricated through a single-step green procedure. In this regard, the self-assembly of ZnTPP was carried out through an acid-base neutralization method to prepare ZnTPP nanoparticles. Then, the copper nanoparticles (Cu-NPs) were grown on ZnTPP nanoparticles through a visible-light irradiated photochemical procedure in the absence and presence of polyacrylic acid (PAA) as a modulator. The effect of PAA on the morphological properties of the prepared nanocomposites was evaluated. Eventually, the antibacterial activity of nanocomposites with different morphologies was investigated. In this way, the average zone of inhibition growth of diameter, minimum inhibitory concentration, and minimum bactericidal concentration values was determined. Besides, the cytotoxicity of the nanocomposites was evaluated by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay MCF-7and (HEK-293) cell lines. The specific features of the synthesized nanocomposites identified them as antibacterial compounds which have therapeutic effects on breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas del Metal , Nanocompuestos , Porfirinas , Antibacterianos/química , Neoplasias de la Mama/tratamiento farmacológico , Cobre/química , Femenino , Células HEK293 , Humanos , Nanopartículas del Metal/química , Metaloporfirinas , Nanocompuestos/química , Porfirinas/farmacología , Zinc
8.
Water Sci Technol ; 84(7): 1813-1825, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34662315

RESUMEN

In this study, zinc oxide and silver and copper-doped zinc oxide nanorods were synthesized by a simple template-free precipitation technique. In addition, meso-tetrakis-(4-sulfonatophenyl) porphyrin (TPPS4) was prepared and immobilized on ZnO nanorods (TPPS/ZnO). The synthesized photocatalysts were characterized by various techniques such as X-ray powder diffraction, scanning electron microscopy, UV-visible spectroscopy, diffuse reflectance spectroscopy, and Fourier transform Infrared spectroscopy. The potential of the obtained photocatalysts in the degradation of methylene blue was investigated under UV and visible light irradiation. The results revealed that the photocatalytic activity of TPPS/ZnO was higher than those of the pure ZnO and doped ZnO under visible light irradiation.


Asunto(s)
Óxido de Zinc , Catálisis , Luz , Azul de Metileno , Porfirinas
9.
J Biol Inorg Chem ; 26(6): 689-704, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34420089

RESUMEN

A new multifunctional graphene oxide/Cu (II)-porphyrin MOF nanocomposite (CuG) comprised of Cu-TCPP MOF supported on graphene oxide (GO) nanosheets, has been fabricated by a solvothermal method at low temperature and one-pot process. Cu-TCPP MOF with universal advantages, such as high porosity, nontoxicity, large surface area, and safe biodegradation, combined with GO allows the achievement of an efficient doxorubicin loading (45.7%) and smart pH-responsive release for chemotherapy. More significantly, more than 97% of DOX was released by CuG at pH 5 which was more than that at pH 7.4 (~ 33.5%), while Cu-TCPP MOF displayed DOX release of 68.5% and 49% at pH 5 and 7.4, respectively, illustrating the effect of GO on the smart MOF construction for controllable releasing behavior in vitro. The results of in vitro anticancer experiments demonstrate that the developed nanocarrier exhibited slight or no cytotoxicity on normal cells, while the drug-loaded nanocarrier increased significant cancer cell-killing ability with higher therapeutic efficacy than free DOX, indicating the sustained release behavior of the CuG nanocarrier without any "burst effect". Moreover, the in vivo experiments demonstrated that the CuG-DOX exhibited significantly higher anticancer efficiency compared with free DOX. High anti-cancer therapeutic efficacy of this nanoscale carrier as an efficient pH sensitive agent, has the potential to enter further biomedical investigations. A new smart multifunctional graphene oxide-Cu (II)-porphyrin MOF nanocomposite (CuG) formed of Cu-TCPP MOF and graphene oxide (GO) has successfully fabricated and demonstrated an efficient pH-responsive drug release behavior in cancer therapy without using any targeting ligand.


Asunto(s)
Antineoplásicos/administración & dosificación , Cobre/química , Portadores de Fármacos/síntesis química , Grafito/química , Porfirinas/química , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Liberación de Fármacos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Estructuras Metalorgánicas/química , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Molecular , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Bioorg Med Chem Lett ; 43: 128107, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991624

RESUMEN

Triple-Negative Breast Cancer (TNBC) is a highly aggressive form of breast cancer. The high rate of metastasis associated with TNBC is attributed to its multidrug resistance, making the treatment of this metastatic condition difficult. The development of metal-based antitumor agents was launched with the discovery of cisplatin, followed by the development of related antitumor drugs such as carboplatin and oxaliplatin. Yet, the severe side effects of this approach represent a limitation for its clinical use. The current search for new metal-based antitumor agents possessing less severe side effects than these platinum-based complexes has focused on various complexes of nickel and palladium, the group 10 congeners of platinum. In this work, we have prepared a series of SCS-type pincer complexes of nickel and palladium featuring a stable meta-phenylene central moiety and two chelating but labile thioamide donor moieties at the peripheries of the ligand. We have demonstrated that the complexes in question, namely L1NiCl, L1NiBr, L1PdCl, L2PdCl, and L3PdCl, are active on the proliferation of estrogen-dependent breast tumor cells (MCF-7 and MC4L2) and triple-negative breast cancer (4 T1). Among the complexes studied, the palladium derivatives were found to be much safer anticancer agents than nickel counterparts; these were thus selected for further investigations for their effects on tumor cell adhesion and migration as well. The results of our studies show that palladium complexes are effective for inhibiting TNBC 4 T1 cells adhesion and migration. Finally, the HOMO and LUMO analysis was used to determine the reactivity and charge transfer within the compounds.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Complejos de Coordinación/farmacología , Níquel/farmacología , Paladio/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Estructura Molecular , Níquel/química , Paladio/química , Relación Estructura-Actividad
11.
Photochem Photobiol ; 97(2): 385-397, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33152128

RESUMEN

The thermal stability and photo-bactericidal effect of several tetra-cationic porphyrins and their zinc ion compounds immobilized onto cellulosic fabrics against S. aureus, P. aeruginosa, and E. coli were investigated and compared using a 100 W tungsten lamp. Immobilization of various concentrations of these photosensitizers onto cellulosic fabrics was carried out and characterized by ATR-FT-IR, DRS, TGA, and SEM. Applied cellulosic fabrics with the photosensitizers exhibited remarkable photo-stability, thermal stability, and antimicrobial activity against these studied strains.


Asunto(s)
Antibacterianos/farmacología , Celulosa/química , Estabilidad de Medicamentos , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Temperatura , Textiles , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Fármacos Fotosensibilizantes/química , Porfirinas/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
12.
Mol Divers ; 25(2): 877-888, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32189236

RESUMEN

Fourteen novel 4,5-diphenyl-imidazol-1,2,3-triazole hybrids 8a-n were synthesized with good yields by performing click reaction between the 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole and various benzyl azides. The synthesized compounds 8a-n were evaluated against yeast α-glucosidase, and all these compounds exhibited excellent inhibitory activity (IC50 values in the range of 85.6 ± 0.4-231.4 ± 1.0 µM), even much more potent than standard drug acarbose (IC50 = 750.0 µM). Among them, 4,5-diphenyl-imidazol-1,2,3-triazoles possessing 2-chloro and 2-bromo-benzyl moieties (compounds 8g and 8i) demonstrated the most potent inhibitory activities toward α-glucosidase. The kinetic study of the compound 8g revealed that this compound inhibited α-glucosidase in a competitive mode. Furthermore, docking calculations of these compounds were performed to predict the interaction mode of the synthesized compounds in the active site of α-glucosidase. A novel series of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids 8a-n was synthesized with good yields by performing click reaction between the 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1Himidazole and various benzyl azides. The synthesized compounds 8a-n were evaluated against yeast α-glucosidase and all these compounds exhibited excellent inhibitory activity (IC50 values in the range of 85.6 ± 0.4-231.4 ± 1.0 µM), even much more potent than standard drug acarbose (IC50 = 750.0 µM).


Asunto(s)
Hipoglucemiantes , Imidazoles , Triazoles , alfa-Glucosidasas/química , Diseño de Fármacos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/toxicidad , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/farmacocinética , Imidazoles/toxicidad , Cinética , Modelos Biológicos , Simulación del Acoplamiento Molecular , Triazoles/síntesis química , Triazoles/química , Triazoles/farmacocinética , Triazoles/toxicidad
13.
Arch Pharm (Weinheim) ; 353(9): e2000023, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32596826

RESUMEN

A new series of 1,2,3-triazole-(thio)barbituric acid hybrids 8a-n was designed and synthesized on the basis of potent pharmacophores with urease inhibitory activity. Therefore, these compounds were evaluated against Helicobacter pylori urease. The obtained result demonstrated that all the synthesized compounds, 8a-n, were more potent than the standard urease inhibitor, hydroxyurea. Moreover, among them, compounds 8a, 8c-e, 8g,h, and 8k,l exhibited higher urease inhibitory activities than the other standard inhibitor used: thiourea. Docking studies were performed with the synthesized compounds. Furthermore, molecular dynamic simulation of the most potent compounds, 8e and 8l, showed that these compounds interacted with the conserved residues Cys592 and His593, which belong to the active site flap and are essential for enzymatic activity. These interactions have two consequences: (a) blocking the movement of a flap at the entrance of the active site channel and (b) stabilizing the closed active site flap conformation, which significantly reduces the catalytic activity of urease. Calculation of the physicochemical and topological properties of the synthesized compounds 8a-n predicted that all these compounds can be orally active. The ADME prediction of compounds 8a-n was also performed.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Tiobarbitúricos/farmacología , Triazoles/farmacología , Ureasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad , Tiobarbitúricos/síntesis química , Tiobarbitúricos/química , Tiourea/farmacología , Triazoles/síntesis química , Triazoles/química
14.
ACS Omega ; 5(19): 11024-11034, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32455223

RESUMEN

It is vital to acquire power conversion efficiencies comparable to other emerging solar cell technologies by making quantum dot-sensitized solar cells (QDSSCs) competitive. In this study, the effect of graphene oxide (GO), nitrogen, manganese, and a porphyrin compound on the performance of QDSSCs based on a TiO2/CdS/ZnS photoanode was investigated. First, adding GO and nitrogen into TiO2 has a conspicuous impact on the cell efficacy. Both these materials reduce the recombination rate and expand the specific surface area of TiO2 as well as dye loading, reinforcing cell efficiency value. The maximum power conversion efficiency of QDSSC with a GO N-doped photoelectrode was 2.52%. Second, by employing Mn2+ (5 and 10 wt %) doping of ZnS, we have succeeded in considerably improving cell performance (from 2.52 to 3.47%). The reason for this could be for the improvement of the passivation layer of ZnS by Mn2+ ions, bringing about to a smaller recombination of photoinjected electrons with either oxidized dye molecules or electrolyte at the surface of titanium dioxide. However, doping of 15 wt % Mn2+ had an opposite effect and somewhat declined the cell performance. Finally, a Zn-porphyrin dye was added to the CdS/ZnS by a cosensitization method, widening the light absorption range to the NIR (near-infrared region) (>700 nm), leading to the higher short-circuit current density (J SC) and cell efficacy. Utilizing an environmentally safe porphyrin compound into the structure of QDSSC has dramatically enhanced the cell efficacy to 4.62%, which is 40% higher than that of the result obtained from the TiO2/CdS/ZnS photoelectrode without porphyrin coating.

15.
Bioorg Chem ; 92: 103206, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31445191

RESUMEN

A novel series of biscoumarin-1,2,3-triazole hybrids 6a-n was prepared and evaluated for α-glucosidase inhibitory potential. All fourteen derivatives exhibited excellent α-glucosidase inhibitory activity with IC50 values ranging between 13.0 ±â€¯1.5 and 75.5 ±â€¯7.0 µM when compared with the acarbose as standard inhibitor (IC50 = 750.0 ±â€¯12.0 µM). Among the synthesized compounds, compounds 6c (IC50 = 13.0 ±â€¯1.5 µM) and 6g (IC50 = 16.4 ±â€¯1.7 µM) exhibited the highest inhibitory activity against α-glucosidase and were non-cytotoxic towards normal fibroblast cells. Kinetic study revealed that compound 6c inhibits the α-glucosidase in a competitive mode. Furthermore, molecular docking investigation was performed to find interaction modes of the biscoumarin-1,2,3-triazole derivatives.


Asunto(s)
Cumarinas/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Triazoles/farmacología , alfa-Glucosidasas/metabolismo , Células Cultivadas , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Lactante , Cinética , Estructura Molecular , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
16.
J Biomol Struct Dyn ; 37(14): 3788-3802, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30277419

RESUMEN

This report describes the results of a study on the antiproliferative activity of the morpholine-based ligand 1,3-bis(1-morpholinothiocarbonyl)benzene (HL) and its nickel(II) complex (NiL) against human breast cancer cells (MCF-7), colon carcinoma cells (C26), and normal fibroblast NIH-3T3 cells. NiL showed better cytotoxicity on both cancerous cells relative to normal cells in vitro with the highest selective index of 2.22 in MCF-7 cells. The interaction of both compounds with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was studied using various spectroscopic techniques and analytical methods such as UV - vis titrations, thermal denaturation, circular dichroism, competitive fluorescent intercalator displacement assays, as well as molecular modeling. The fluorescence intensity of the probe molecule increases clearly when HL and NiL are added to the methylene blue (MB)-DNA system. Furthermore, the binding of HL and NiL quenches the BSA fluorescence, revealing a 1:1 interaction with a binding constant of about 105 M-1. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias del Colon/patología , ADN/metabolismo , Fibroblastos/citología , Morfolinas/farmacología , Albúmina Sérica Bovina/metabolismo , Animales , Sitios de Unión , Bovinos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dicroismo Circular , Teoría Funcional de la Densidad , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Cinética , Células MCF-7 , Ratones , Simulación del Acoplamiento Molecular , Morfolinas/síntesis química , Morfolinas/química , Células 3T3 NIH , Desnaturalización de Ácido Nucleico , Termodinámica
17.
Iran J Pharm Res ; 16(3): 1059-1070, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201094

RESUMEN

In this research, dipeptide (his-ß-alanine) and porphyrin derivatives were choosen for comparing chelating ability of toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+in-vitro. The reason for choosing these two compounds is that both of them are naturally present in biological systems and comparison of chelating ability of these two compounds has not yet been done. Synthesis and comparison of kinetic study of dipeptide (his-ß-alanine), meso-tetrakis(4-trimethylanilinium) porphyrin (TAPP) and Tetrakis(4-sulfonatophenyl)porphyrin (TPPS4) were carried out by our team. In addition, cytotoxicity assays of metals and chelators were also performed using methylthiazoletetrazolium (MTT) test. Furthermore we investigated the protective effect of chelators against cytotoxicity, induced by differenrt toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+ on human lymphocytes. EC50 values on human lymphocytes obtained after 12 h. incubation for Al3+, Cu2+ and Hg2+ were 30, 51, 3 µM respectively and for Pb2+ no cytotoxicity was observed on human lymphocyte up to 1000 µM concentration. EC50 obtained for chelators dipeptide, TPPS4 and TAPP were 948, 472 and 175 µM respectively. Pretreatment of human lymphocyte with subtoxic concentations of chelators reduced toxicity of the metals against human blood lymphocytes.

18.
J Colloid Interface Sci ; 466: 310-21, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26748063

RESUMEN

In this study, a nanostructure material of pillared graphene made of tin porphyrin functionalized graphene-TiO2 composite (TG) was successfully synthesized. The prepared compound showed high activity in the photodegradation reaction under irradiation of visible light. To investigate the effect of graphene as well as dye sensitization on the photoactivity of the catalysts, photocatalytic properties and photocurrent responses of the photocatalyst were examined. Results showed that the composite of graphene-TiO2 containing 3% graphene had the highest photoactivity. Besides, tin porphyrin-pillared TG composite (TGSP) material exhibited an excellent visible light photocatalytic performance in degradation of methyl orange dye. The photoelectrochemical investigations determined that compared with the pure TiO2 electrode, the TGSP electrode exhibited a 23-fold enhancement of photocurrent intensity, suggesting the synergistic effect of the TiO2, the graphene, and the tin porphyrin photosensitizer in these photocatalysts. Furthermore, the mechanism of the photocatalytic process of the synthesized catalysts and the charge transfer mechanism in the prepared TGSP via its band edge positions was also discussed.

19.
Mater Sci Eng C Mater Biol Appl ; 59: 661-668, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26652420

RESUMEN

In the present work, we report on the preparation of cellulosic fabrics bearing two types of photo-sensitizers in order to prepare efficient polymeric materials for antimicrobial applications. The obtained porphyrin-grafted cellulosic fabrics were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, diffuse reflectance UV-Vis (DRUV) spectroscopy, thermo-gravimetric analysis (TG) and scanning electron microscopy (SEM). Antimicrobial activity of the prepared porphyrin-cellulose was tested under visible light irradiation against Staphylococcus aureus, Pseudomunas aeroginosa and Escherichia coli. In addition, the effect of two parameters on photo-bactericidal activity of treated fibers was studied: illumination time and concentration of photosensitizers (PS).


Asunto(s)
Antibacterianos/química , Celulosa/química , Metaloporfirinas/química , Fármacos Fotosensibilizantes/química , Polímeros/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Celulosa/farmacología , Metaloporfirinas/farmacología , Pruebas de Sensibilidad Microbiana , Fármacos Fotosensibilizantes/farmacología , Polímeros/farmacología
20.
Water Sci Technol ; 71(8): 1249-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909737

RESUMEN

In this study, zinc oxide (ZnO) nanorods have been synthesized using a simple template-free precipitation technique and deposited on glass substrate. The meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) has been synthesized and then immobilized on the surface of ZnO nanorods to prepare an organic/inorganic composite. The samples were characterized by various techniques such as X-ray diffraction, diffuse reflectance spectra, Fourier transform-infrared spectroscopy and scanning electron microscopy. In addition, the photobactericidal activity of TPPS/ZnO composite, TPPS and ZnO nanorods was tested against the pathogenic bacterium of Escherichia coli under visible LED lamp irradiation. The results indicate that the photobactericidal activity of TPPS-loaded ZnO nanorods was better than TPPS or ZnO nanorods, separately.


Asunto(s)
Desinfección/métodos , Luz , Nanotubos/química , Porfirinas/química , Óxido de Zinc/química , Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación , Escherichia coli , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...