Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Sci Food Agric ; 104(4): 2303-2313, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-37947769

BACKGROUND: Enhancing productivity and profitability and reducing climatic risk are the major challenges for sustaining rice production. Extreme weather can have significant and varied effects on crops, influencing agricultural productivity, crop yields and food security. RESULTS: In this study, a comparative evaluation of two crop management systems was performed involving farmers adopting a weather forecast-based advisory service (WFBAS) and usual farmers' practice (FP). WFBAS crop management followed the generated weather forecast-based advice whereas the control farmers (FP) did not receive any weather forecast-based advice, rather following their usual rice cultivation practices. The results of the experiments revealed that WFBAS farmers had a significant yield advantage over FP farmers. With the WFBAS technology, the farmers used inputs judiciously, utilized the benefit of favorable weather and minimized the risk resulting from extreme weather events. As a result, besides the yield enhancement, WFBAS provided a scope to protect the environment with the minimum residual effect of fertilizer and pesticides. It also reduced the pressure on groundwater by ensuring efficient water management. Finally, the farmers benefited from higher income through yield enhancement, reduction of the costs of production and reduction of risk. CONCLUSION: A successful and extensive implementation of WFBAS in the rice production system would assist Bangladesh in achieving Sustainable Development Goal 2.4, which focuses on rice productivity and profitability of farmers as well as long-term food security of the country. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Oryza , Pesticides , Humans , Agriculture/methods , Weather , Farmers
2.
Theor Appl Genet ; 136(1): 18, 2023 Jan.
Article En | MEDLINE | ID: mdl-36680594

To assess the efficiency of genetic improvement programs, it is essential to assess the genetic trend in long-term data. The present study estimates the genetic trends for grain yield of rice varieties released between 1970 and 2020 by the Bangladesh Rice Research Institute. The yield of the varieties was assessed from 2001-2002 to 2020-2021 in multi-locations trials. In such a series of trials, yield may increase over time due to (i) genetic improvement (genetic trend) and (ii) improved management or favorable climate change (agronomic/non-genetic trend). In both the winter and monsoon seasons, we observed positive genetic and non-genetic trends. The annual genetic trend for grain yield in both winter and monsoon rice varieties was 0.01 t ha-1, while the non-genetic trend for both seasons was 0.02 t ha-1, corresponding to yearly genetic gains of 0.28% and 0.18% in winter and monsoon seasons, respectively. The overall percentage yield change from 1970 until 2020 for winter rice was 40.96%, of which 13.91% was genetic trend and 27.05% was non-genetic. For the monsoon season, the overall percentage change from 1973 until 2020 was 38.39%, of which genetic and non-genetic increases were 8.36% and 30.03%, respectively. Overall, the contribution of non-genetic trend is larger than genetic trend both for winter and monsoon seasons. These results suggest that limited progress has been made in improving yield in Bangladeshi rice breeding programs over the last 50 years. Breeding programs need to be modernized to deliver sufficient genetic gains in the future to sustain Bangladeshi food security.


Oryza , Oryza/genetics , Bangladesh , Plant Breeding , Edible Grain/genetics , Agriculture , Seasons
3.
PLoS One ; 16(12): e0261128, 2021.
Article En | MEDLINE | ID: mdl-34890444

Bangladesh positioned as third rice producing country in the world. In Bangladesh, regional growth and trend in rice production determinants, disparities and similarities of rice production environments are highly desirable. In this study, the secondary time series data of area, production, and yield of rice from 1969-70 to 2019-20 were used to investigate the growth and trend by periodic, regional, seasonal and total basis. Quality checking, trend fitting, and classification analysis were performed by the Durbin-Watson test, Exponential growth model, Cochrane-Orcutt iteration method and clustering method. The production contribution to the national rice production of Boro rice is increasing at 0.97% per year, where Aus and Aman season production contribution significantly decreased by 0.48% and 0.49% per year. Among the regions, Mymensingh, Rangpur, Bogura, Jashore, Rajshahi, and Chattogram contributed the most i.e., 13.9%, 9.8%, 8.6%, 8.6%, 8.2%, and 8.0%, respectively. Nationally, the area of Aus and Aman had a decreasing trend with a -3.63% and -0.16% per year, respectively. But, in the recent period (Period III) increasing trend was observed in the most regions. The Boro cultivation area is increasing with a rate of 3.57% per year during 1984-85 to 2019-20. High yielding variety adoption rate has increased over the period and in recent years it has found 72% for Aus, 73.5% for Aman, and 98.4% for Boro season. As a result, the yield of the Aus, Aman, and Boro seasons has been found increasing growth for most of the regions. We have identified different cluster regions in different seasons, indicating high dissimilarities among the rice production regions in Bangladesh. The region-wise actionable plan should be taken to rapidly adopt new varieties, management technologies and extension activities in lower contributor regions to improve productivity. Cluster-wise, policy strategies should be implemented for top and less contributor regions to ensure rice security of Bangladesh.


Crops, Agricultural/growth & development , Oryza/growth & development , Bangladesh , Crops, Agricultural/classification , Food Security , Geographic Information Systems , Oryza/classification , Seasons , Time Factors
...