Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurol ; 271(6): 3426-3438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520520

RESUMEN

BACKGROUND: Vestibular migraine (VM) and Menière's disease (MD) are two common causes of recurrent spontaneous vertigo. Using history, video-nystagmography and audiovestibular tests, we developed machine learning models to separate these two disorders. METHODS: We recruited patients with VM or MD from a neurology outpatient facility. One hundred features from six "feature subsets": history, acute video-nystagmography and four laboratory tests (video head impulse test, vestibular-evoked myogenic potentials, caloric testing and audiogram) were used. We applied ten machine learning algorithms to develop classification models. Modelling was performed using three "tiers" of data availability to simulate three clinical settings. "Tier 1" used all available data to simulate the neuro-otology clinic, "Tier 2" used only history, audiogram and caloric test data, representing the general neurology clinic, and "Tier 3" used history alone as occurs in primary care. Model performance was evaluated using tenfold cross-validation. RESULTS: Data from 160 patients with VM and 114 with MD were used for model development. All models effectively separated the two disorders for all three tiers, with accuracies of 85.77-97.81%. The best performing algorithms (AdaBoost and Random Forest) yielded accuracies of 97.81% (95% CI 95.24-99.60), 94.53% (91.09-99.52%) and 92.34% (92.28-96.76%) for tiers 1, 2 and 3. The best feature subset combination was history, acute video-nystagmography, video head impulse test and caloric testing, and the best single feature subset was history. CONCLUSIONS: Machine learning models can accurately differentiate between VM and MD and are promising tools to assist diagnosis by medical practitioners with diverse levels of expertise and resources.


Asunto(s)
Aprendizaje Automático , Enfermedad de Meniere , Trastornos Migrañosos , Vértigo , Humanos , Femenino , Masculino , Persona de Mediana Edad , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/fisiopatología , Vértigo/diagnóstico , Vértigo/fisiopatología , Adulto , Enfermedad de Meniere/diagnóstico , Enfermedad de Meniere/fisiopatología , Diagnóstico Diferencial , Anciano , Recurrencia
2.
Neural Netw ; 146: 36-68, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34839091

RESUMEN

Fake news and misinformation have adopted various propagation media over time, nowadays spreading predominantly through online social networks. During the ongoing COVID-19 pandemic, false information is affecting human life in many spheres The world needs automated detection technology and efforts are being made to meet this requirement with the use of artificial intelligence. Neural network detection mechanisms are robust and durable and hence are used extensively in fake news detection. Deep learning algorithms demonstrate efficiency when they are provided with a large amount of training data. Given the scarcity of relevant fake news datasets, we built the Coronavirus Infodemic Dataset (CovID), which contains fake news posts and articles related to coronavirus. This paper presents a novel framework, the Allied Recurrent and Convolutional Neural Network (ARCNN), to detect fake news based on two different modalities: text and image. Our approach uses recurrent neural networks (RNNs) and convolutional neural networks (CNNs) and combines both streams to generate a final prediction. We present extensive research on various popular RNN and CNN models and their performance on six coronavirus-specific fake news datasets. To exhaustively analyze performance, we present experimentation performed and results obtained by combining both modalities using early fusion and four types of late fusion techniques. The proposed framework is validated by comparisons with state-of-the-art fake news detection mechanisms, and our models outperform each of them.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Inteligencia Artificial , Desinformación , Humanos , Infodemia , Pandemias , SARS-CoV-2
3.
Sensors (Basel) ; 21(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833641

RESUMEN

Vertigo is a sensation of movement that results from disorders of the inner ear balance organs and their central connections, with aetiologies that are often benign and sometimes serious. An individual who develops vertigo can be effectively treated only after a correct diagnosis of the underlying vestibular disorder is reached. Recent advances in artificial intelligence promise novel strategies for the diagnosis and treatment of patients with this common symptom. Human analysts may experience difficulties manually extracting patterns from large clinical datasets. Machine learning techniques can be used to visualize, understand, and classify clinical data to create a computerized, faster, and more accurate evaluation of vertiginous disorders. Practitioners can also use them as a teaching tool to gain knowledge and valuable insights from medical data. This paper provides a review of the literatures from 1999 to 2021 using various feature extraction and machine learning techniques to diagnose vertigo disorders. This paper aims to provide a better understanding of the work done thus far and to provide future directions for research into the use of machine learning in vertigo diagnosis.


Asunto(s)
Inteligencia Artificial , Mareo , Diagnóstico Diferencial , Mareo/diagnóstico , Humanos , Aprendizaje Automático , Vértigo/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA