Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 206: 108262, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091931

RESUMEN

We have previously reported a phenomenon of "conditional pathogenesis", in which, a drought-tolerant rhizobacterium, Pseudomonas putida AKMP7, promotes plant growth under well-watered conditions, while, deteriorating plant health under water-stressed conditions, in Arabidopsis thaliana seedlings. To understand the molecular mechanisms behind this phenomenon, we studied the modulation of salicylic acid (SA) biosynthesis as well as SA-responsive gene expression, involved in systemic acquired resistance (SAR), in A. thaliana, by AKMP7, under well-watered and water-stressed conditions. We found that, the plant SA levels were upregulated by AKMP7, both under, well-watered as well as water-stressed conditions. However, the SA signaling gene, Non-expressor of Pathogenesis Related gene 1 (NPR1) and Pathogenesis Related gene 1 (PR1) were upregulated under well-watered conditions and suppressed under water-stress, in AKMP7 inoculated seedlings. To understand the reason for this, we studied the expression of NPR4, a negative regulator of NPR1, and, NPR3, a negative regulator of PR1. We observed that, AKMP7 suppresses NPR1 and, consequently, PR1 genes, by upregulating NPR4 under water stress. To understand the potential role of NPR4 in conditional-pathogenesis, we performed physiological studies with NPR4 knockout mutants of A. thaliana and found that the NPR4 mutants did not exhibit any signs of the characteristic growth retardation caused by AKMP7 inoculation, under water stress. Preliminary studies with the model pathogen, Pseudomonas syringae, indicate that AKMP7 may lead to enhanced disease suppression under well-watered conditions, but not under water-stress. Taken together, our data suggest that, AKMP7 causes conditional pathogenesis by an overall compromise in plant immune response under water-stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas putida , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Deshidratación , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología
2.
Plant Physiol Biochem ; 183: 46-55, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35567874

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are beneficial soil bacteria that colonise the rhizosphere and help plants in growth, development, and stress tolerance. While there is a significant body of research elucidating their benefits to plants, studies on the "abnormal" or "unexpected" behavior of these bacteria are almost non-existent. One such study from our laboratory has previously reported a unique situation in which a certain strain of drought and thermo-tolerant PGPR, namely, Pseudomonas putida AKMP7, becomes pathogenic towards Arabidopsis thaliana under drought conditions, but not under normal (well-watered) conditions. In this study, we have probed deeper into this phenomenon of "conditional pathogenesis". We found that, AKMP7 imparts an enhancement in plant growth under well-watered conditions, while, causing a deterioration in plant health under drought conditions. In an attempt to understand the underlying reasons for this phenomenon, we analysed the phytohormones released by Pseudomonas putida AKMP7 using LC-ESI-MS/MS technique. We identified that AKMP7 releases zeatin (a cytokinin), the auxin derivative -indole acetamide and amino acid-conjugates of auxin (indole-3-acetyl-L-alanine, indole-3-acetyl-L-phenylalanine and indole-3-acetyl-L-aspartate) in the growth medium. By treating the plants with commercially obtained forms of these phytohormones, individually or in combination with AKMP7, we identified that zeatin and auxin derivative indole acetamide can play a crucial role in the conditional pathogenesis exhibited by this bacterium on A. thaliana under drought conditions. Our work lays a foundation for further understanding the precise molecular mechanisms involved in this unique phenomenon of conditional/opportunistic pathogenesis.


Asunto(s)
Arabidopsis , Pseudomonas putida , Acetamidas , Arabidopsis/microbiología , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Plantas , Suelo , Microbiología del Suelo , Espectrometría de Masas en Tándem , Zeatina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA