Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Heliyon ; 10(9): e29630, 2024 May 15.
Article En | MEDLINE | ID: mdl-38720727

Prostate cancer is a major world health problem for men. This shows how important early detection and accurate diagnosis are for better treatment and patient outcomes. This study compares different ways to find Prostate Cancer (PCa) and label tumors as normal or abnormal, with the goal of speeding up current work in microarray gene data analysis. The study looks at how well several feature extraction methods work with three feature selection strategies: Harmonic Search (HS), Firefly Algorithm (FA), and Elephant Herding Optimization (EHO). The techniques tested are Expectation Maximization (EM), Nonlinear Regression (NLR), K-means, Principal Component Analysis (PCA), and Discrete Cosine Transform (DCT). Eight classifiers are used for the task of classification. These are Random Forest, Decision Tree, Adaboost, XGBoost, and Support Vector Machine (SVM) with linear, polynomial, and radial basis function kernels. This study looks at how well these classifiers work with and without feature selection methods. It finds that the SVM with radial basis function kernel, using DCT for feature extraction and EHO for feature selection, does the best of all of them, with an accuracy of 94.8 % and an error rate of 5.15 %.

2.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38671736

Microarray gene expression analysis is a powerful technique used in cancer classification and research to identify and understand gene expression patterns that can differentiate between different cancer types, subtypes, and stages. However, microarray databases are highly redundant, inherently nonlinear, and noisy. Therefore, extracting meaningful information from such a huge database is a challenging one. The paper adopts the Fast Fourier Transform (FFT) and Mixture Model (MM) for dimensionality reduction and utilises the Dragonfly optimisation algorithm as the feature selection technique. The classifiers employed in this research are Nonlinear Regression, Naïve Bayes, Decision Tree, Random Forest and SVM (RBF). The classifiers' performances are analysed with and without feature selection methods. Finally, Adaptive Moment Estimation (Adam) and Random Adaptive Moment Estimation (RanAdam) hyper-parameter tuning techniques are used as improvisation techniques for classifiers. The SVM (RBF) classifier with the Fast Fourier Transform Dimensionality Reduction method and Dragonfly feature selection achieved the highest accuracy of 98.343% with RanAdam hyper-parameter tuning compared to other classifiers.

3.
Biomimetics (Basel) ; 8(6)2023 Oct 22.
Article En | MEDLINE | ID: mdl-37887634

In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier's performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier's performance emphasizes the role of feature selection methods.

4.
Diagnostics (Basel) ; 13(20)2023 Oct 23.
Article En | MEDLINE | ID: mdl-37892110

Lung cancer is a prevalent malignancy that impacts individuals of all genders and is often diagnosed late due to delayed symptoms. To catch it early, researchers are developing algorithms to study lung cancer images. The primary objective of this work is to propose a novel approach for the detection of lung cancer using histopathological images. In this work, the histopathological images underwent preprocessing, followed by segmentation using a modified approach of KFCM-based segmentation and the segmented image intensity values were dimensionally reduced using Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO). Algorithms such as KL Divergence and Invasive Weed Optimization (IWO) are used for feature selection. Seven different classifiers such as SVM, KNN, Random Forest, Decision Tree, Softmax Discriminant, Multilayer Perceptron, and BLDC were used to analyze and classify the images as benign or malignant. Results were compared using standard metrics, and kappa analysis assessed classifier agreement. The Decision Tree Classifier with GWO feature extraction achieved good accuracy of 85.01% without feature selection and hyperparameter tuning approaches. Furthermore, we present a methodology to enhance the accuracy of the classifiers by employing hyperparameter tuning algorithms based on Adam and RAdam. By combining features from GWO and IWO, and using the RAdam algorithm, the Decision Tree classifier achieves the commendable accuracy of 91.57%.

5.
Bioengineering (Basel) ; 10(8)2023 Aug 06.
Article En | MEDLINE | ID: mdl-37627818

Microarray gene expression-based detection and classification of medical conditions have been prominent in research studies over the past few decades. However, extracting relevant data from the high-volume microarray gene expression with inherent nonlinearity and inseparable noise components raises significant challenges during data classification and disease detection. The dataset used for the research is the Lung Harvard 2 Dataset (LH2) which consists of 150 Adenocarcinoma subjects and 31 Mesothelioma subjects. The paper proposes a two-level strategy involving feature extraction and selection methods before the classification step. The feature extraction step utilizes Short Term Fourier Transform (STFT), and the feature selection step employs Particle Swarm Optimization (PSO) and Harmonic Search (HS) metaheuristic methods. The classifiers employed are Nonlinear Regression, Gaussian Mixture Model, Softmax Discriminant, Naive Bayes, SVM (Linear), SVM (Polynomial), and SVM (RBF). The two-level extracted relevant features are compared with raw data classification results, including Convolutional Neural Network (CNN) methodology. Among the methods, STFT with PSO feature selection and SVM (RBF) classifier produced the highest accuracy of 94.47%.

6.
Diagnostics (Basel) ; 13(16)2023 Aug 11.
Article En | MEDLINE | ID: mdl-37627916

Diabetes is a life-threatening, non-communicable disease. Diabetes mellitus is a prevalent chronic disease with a significant global impact. The timely detection of diabetes in patients is necessary for an effective treatment. The primary objective of this study is to propose a novel approach for identifying type II diabetes mellitus using microarray gene data. Specifically, our research focuses on the performance enhancement of methods for detecting diabetes. Four different Dimensionality Reduction techniques, Detrend Fluctuation Analysis (DFA), the Chi-square probability density function (Chi2pdf), the Firefly algorithm, and Cuckoo Search, are used to reduce high dimensional data. Metaheuristic algorithms like Particle Swarm Optimization (PSO) and Harmonic Search (HS) are used for feature selection. Seven classifiers, Non-Linear Regression (NLR), Linear Regression (LR), Logistics Regression (LoR), Gaussian Mixture Model (GMM), Bayesian Linear Discriminant Classifier (BLDC), Softmax Discriminant Classifier (SDC), and Support Vector Machine-Radial Basis Function (SVM-RBF), are utilized to classify the diabetic and non-diabetic classes. The classifiers' performances are analyzed through parameters such as accuracy, recall, precision, F1 score, error rate, Matthews Correlation Coefficient (MCC), Jaccard metric, and kappa. The SVM (RBF) classifier with the Chi2pdf Dimensionality Reduction technique with a PSO feature selection method attained a high accuracy of 91% with a Kappa of 0.7961, outperforming all of the other classifiers.

7.
Bioengineering (Basel) ; 10(6)2023 Jun 02.
Article En | MEDLINE | ID: mdl-37370609

Photoplethysmography (PPG) signals are widely used in clinical practice as a diagnostic tool since PPG is noninvasive and inexpensive. In this article, machine learning techniques were used to improve the performance of classifiers for the detection of cardiovascular disease (CVD) from PPG signals. PPG signals occupy a large amount of memory and, hence, the signals were dimensionally reduced in the initial stage. A total of 41 subjects from the Capno database were analyzed in this study, including 20 CVD cases and 21 normal subjects. PPG signals are sampled at 200 samples per second. Therefore, 144,000 samples per patient are available. Now, a one-second-long PPG signal is considered a segment. There are 720 PPG segments per patient. For a total of 41 subjects, 29,520 segments of PPG signals are analyzed in this study. Five dimensionality reduction techniques, such as heuristic- (ABC-PSO, cuckoo clusters, and dragonfly clusters) and transformation-based techniques (Hilbert transform and nonlinear regression) were used in this research. Twelve different classifiers, such as PCA, EM, logistic regression, GMM, BLDC, firefly clusters, harmonic search, detrend fluctuation analysis, PAC Bayesian learning, KNN-PAC Bayesian, softmax discriminant classifier, and detrend with SDC were utilized to detect CVD from dimensionally reduced PPG signals. The performance of the classifiers was assessed based on their metrics, such as accuracy, performance index, error rate, and a good detection rate. The Hilbert transform techniques with the harmonic search classifier outperformed all other classifiers, with an accuracy of 98.31% and a good detection rate of 96.55%.

8.
Front Comput Neurosci ; 16: 1016516, 2022.
Article En | MEDLINE | ID: mdl-36465961

In comparison to other biomedical signals, electroencephalography (EEG) signals are quite complex in nature, so it requires a versatile model for feature extraction and classification. The structural information that prevails in the originally featured matrix is usually lost when dealing with standard feature extraction and conventional classification techniques. The main intention of this work is to propose a very novel and versatile approach for EEG signal modeling and classification. In this work, a sparse representation model along with the analysis of sparseness measures is done initially for the EEG signals and then a novel convergence of utilizing these sparse representation measures with Swarm Intelligence (SI) techniques based Hidden Markov Model (HMM) is utilized for the classification. The SI techniques utilized to compute the hidden states of the HMM are Particle Swarm Optimization (PSO), Differential Evolution (DE), Whale Optimization Algorithm (WOA), and Backtracking Search Algorithm (BSA), thereby making the HMM more pliable. Later, a deep learning methodology with the help of Convolutional Neural Network (CNN) was also developed with it and the results are compared to the standard pattern recognition classifiers. To validate the efficacy of the proposed methodology, a comprehensive experimental analysis is done over publicly available EEG datasets. The method is supported by strong statistical tests and theoretical analysis and results show that when sparse representation is implemented with deep learning, the highest classification accuracy of 98.94% is obtained and when sparse representation is implemented with SI-based HMM method, a high classification accuracy of 95.70% is obtained.

9.
Front Comput Neurosci ; 16: 900885, 2022.
Article En | MEDLINE | ID: mdl-35847966

To classify the texts accurately, many machine learning techniques have been utilized in the field of Natural Language Processing (NLP). For many pattern classification applications, great success has been obtained when implemented with deep learning models rather than using ordinary machine learning techniques. Understanding the complex models and their respective relationships within the data determines the success of such deep learning techniques. But analyzing the suitable deep learning methods, techniques, and architectures for text classification is a huge challenge for researchers. In this work, a Contiguous Convolutional Neural Network (CCNN) based on Differential Evolution (DE) is initially proposed and named as Evolutionary Contiguous Convolutional Neural Network (ECCNN) where the data instances of the input point are considered along with the contiguous data points in the dataset so that a deeper understanding is provided for the classification of the respective input, thereby boosting the performance of the deep learning model. Secondly, a swarm-based Deep Neural Network (DNN) utilizing Particle Swarm Optimization (PSO) with DNN is proposed for the classification of text, and it is named Swarm DNN. This model is validated on two datasets and the best results are obtained when implemented with the Swarm DNN model as it produced a high classification accuracy of 97.32% when tested on the BBC newsgroup text dataset and 87.99% when tested on 20 newsgroup text datasets. Similarly, when implemented with the ECCNN model, it produced a high classification accuracy of 97.11% when tested on the BBC newsgroup text dataset and 88.76% when tested on 20 newsgroup text datasets.

10.
Biomed Res Int ; 2022: 6750457, 2022.
Article En | MEDLINE | ID: mdl-35872866

The most common gynecologic cancer, behind cervical and uterine, is ovarian cancer. Ovarian cancer is a severe concern for women. Abnormal cells form and spread throughout the body. Ovarian cancer microarray data can diagnose and prognosis. Typically, ovarian cancer microarray data contains tens of thousands of genes. In order to reduce computational complexity, selecting the most critical genes or attributes in the entire dataset is necessary. Because microarray datasets have limited samples and many characteristics, classifier detection lags. So, dimensionality reduction measures are essential to protect disease classification genes. In this research, initially the ANOVA method is used for gene selection and then two clustering-based and three transform-based feature extraction methods, namely, Fuzzy C Means, Softmax Discriminant Algorithm (SDA), Hilbert Transform, Fast Fourier Transform (FFT), and Discrete Cosine Transform (DCT), respectively, are used to select relevant genes further. Six classifiers further classify the features as normal and abnormal. The NLR classifier gives the highest accuracy for SDA features at 92%, and KNN gives the lowest accuracy of 55% for SDA, Hilbert, and DCT features. With correlation distance feature selection, the NLR classifier attains the lowest accuracy of 53%, and the highest accuracy of 88% is obtained by the GMM classifier.


Algorithms , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Female , Humans , Oligonucleotide Array Sequence Analysis/methods , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Prognosis
11.
Front Hum Neurosci ; 16: 895761, 2022.
Article En | MEDLINE | ID: mdl-35721347

The vital data about the electrical activities of the brain are carried by the electroencephalography (EEG) signals. The recordings of the electrical activity of brain neurons in a rhythmic and spontaneous manner from the scalp surface are measured by EEG. One of the most important aspects in the field of neuroscience and neural engineering is EEG signal analysis, as it aids significantly in dealing with the commercial applications as well. To uncover the highly useful information for neural classification activities, EEG studies incorporated with machine learning provide good results. In this study, a Fusion Hybrid Model (FHM) with Singular Value Decomposition (SVD) Based Estimation of Robust Parameters is proposed for efficient feature extraction of the biosignals and to understand the essential information it has for analyzing the brain functionality. The essential features in terms of parameter components are extracted using the developed hybrid model, and a specialized hybrid swarm technique called Hybrid Differential Particle Artificial Bee (HDPAB) algorithm is proposed for feature selection. To make the EEG more practical and to be used in a plethora of applications, the robust classification of these signals is necessary thereby relying less on the trained professionals. Therefore, the classification is done initially using the proposed Zero Inflated Poisson Mixture Regression Model (ZIPMRM) and then it is also classified with a deep learning methodology, and the results are compared with other standard machine learning techniques. This proposed flow of methodology is validated on a few standard Biosignal datasets, and finally, a good classification accuracy of 98.79% is obtained for epileptic dataset and 98.35% is obtained for schizophrenia dataset.

12.
Sensors (Basel) ; 22(9)2022 May 07.
Article En | MEDLINE | ID: mdl-35591246

Manual sleep stage scoring is usually implemented with the help of sleep specialists by means of visual inspection of the neurophysiological signals of the patient. As it is a very hectic task to perform, automated sleep stage classification systems were developed in the past, and advancements are being made consistently by researchers. The various stages of sleep are identified by these automated sleep stage classification systems, and it is quite an important step to assist doctors for the diagnosis of sleep-related disorders. In this work, a holistic strategy named as clustering and dimensionality reduction with feature extraction cum selection for classification along with deep learning (CDFCD) is proposed for the classification of sleep stages with EEG signals. Though the methodology follows a similar structural flow as proposed in the past works, many advanced and novel techniques are proposed under each category in this work flow. Initially, clustering is applied with the help of hierarchical clustering, spectral clustering, and the proposed principal component analysis (PCA)-based subspace clustering. Then the dimensionality of it is reduced with the help of the proposed singular value decomposition (SVD)-based spectral algorithm and the standard variational Bayesian matrix factorization (VBMF) technique. Then the features are extracted and selected with the two novel proposed techniques, such as the sparse group lasso technique with dual-level implementation (SGL-DLI) and the ridge regression technique with limiting weight scheme (RR-LWS). Finally, the classification happens with the less explored multiclass Gaussian process classification (MGC), the proposed random arbitrary collective classification (RACC), and the deep learning technique using long short-term memory (LSTM) along with other conventional machine learning techniques. This methodology is validated on the sleep EDF database, and the results obtained with this methodology have surpassed the results of the previous studies in terms of the obtained classification accuracy reporting a high accuracy of 93.51% even for the six-classes classification problem.


Electroencephalography , Sleep Stages , Sleep Wake Disorders , Automation , Bayes Theorem , Deep Learning , Electroencephalography/methods , Holistic Health , Humans , Machine Learning , Principal Component Analysis , Sleep/physiology , Sleep Stages/physiology , Sleep Wake Disorders/classification , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/physiopathology
13.
J Healthc Eng ; 2021: 6680424, 2021.
Article En | MEDLINE | ID: mdl-34373776

In the field of bioinformatics, feature selection in classification of cancer is a primary area of research and utilized to select the most informative genes from thousands of genes in the microarray. Microarray data is generally noisy, is highly redundant, and has an extremely asymmetric dimensionality, as the majority of the genes present here are believed to be uninformative. The paper adopts a methodology of classification of high dimensional lung cancer microarray data utilizing feature selection and optimization techniques. The methodology is divided into two stages; firstly, the ranking of each gene is done based on the standard gene selection techniques like Information Gain, Relief-F test, Chi-square statistic, and T-statistic test. As a result, the gathering of top scored genes is assimilated, and a new feature subset is obtained. In the second stage, the new feature subset is further optimized by using swarm intelligence techniques like Grasshopper Optimization (GO), Moth Flame Optimization (MFO), Bacterial Foraging Optimization (BFO), Krill Herd Optimization (KHO), and Artificial Fish Swarm Optimization (AFSO), and finally, an optimized subset is utilized. The selected genes are used for classification, and the classifiers used here are Naïve Bayesian Classifier (NBC), Decision Trees (DT), Support Vector Machines (SVM), and K-Nearest Neighbour (KNN). The best results are shown when Relief-F test is computed with AFSO and classified with Decision Trees classifier for hundred genes, and the highest classification accuracy of 99.10% is obtained.


Algorithms , Lung Neoplasms , Animals , Bayes Theorem , Intelligence , Lung Neoplasms/genetics , Support Vector Machine
14.
Comput Intell Neurosci ; 2020: 8853835, 2020.
Article En | MEDLINE | ID: mdl-33335544

One of the serious mental disorders where people interpret reality in an abnormal state is schizophrenia. A combination of extremely disordered thinking, delusion, and hallucination is caused due to schizophrenia, and the daily functions of a person are severely disturbed because of this disorder. A wide range of problems are caused due to schizophrenia such as disturbed thinking and behaviour. In the field of human neuroscience, the analysis of brain activity is quite an important research area. For general cognitive activity analysis, electroencephalography (EEG) signals are widely used as a low-resolution diagnosis tool. The EEG signals are a great boon to understand the abnormality of the brain disorders, especially schizophrenia. In this work, schizophrenia EEG signal classification is performed wherein, initially, features such as Detrend Fluctuation Analysis (DFA), Hurst Exponent, Recurrence Quantification Analysis (RQA), Sample Entropy, Fractal Dimension (FD), Kolmogorov Complexity, Hjorth exponent, Lempel Ziv Complexity (LZC), and Largest Lyapunov Exponent (LLE) are extracted initially. The extracted features are, then, optimized for selecting the best features through four types of optimization algorithms here such as Artificial Flora (AF) optimization, Glowworm Search (GS) optimization, Black Hole (BH) optimization, and Monkey Search (MS) optimization, and finally, it is classified through certain classifiers. The best results show that, for normal cases, a classification accuracy of 87.54% is obtained when BH optimization is utilized with Support Vector Machine-Radial Basis Function (SVM-RBF) kernel, and for schizophrenia cases, a classification accuracy of 92.17% is obtained when BH optimization is utilized with SVM-RBF kernel.


Schizophrenia , Signal Processing, Computer-Assisted , Algorithms , Electroencephalography , Humans , Intelligence , Nonlinear Dynamics , Schizophrenia/diagnosis , Support Vector Machine
15.
Heliyon ; 6(12): e05689, 2020 Dec.
Article En | MEDLINE | ID: mdl-33364482

The basic function of the brain is severely affected by alcoholism. For the easy depiction and assessment of the mental condition of a human brain, Electroencephalography (EEG) signals are highly useful as it can record and measure the electrical activities of the brain much to the satisfaction of doctors and researchers. Utilizing the standard conventional techniques is quite hectic to derive the useful information as these signals are highly non-linear and non-stationary in nature. While recording the EEG signals, the activities of the neurons are recorded from various scalp regions which has varied characteristics and has a very low magnitude. Therefore, human interpretation of such signals is very difficult and consumes a lot of time. Hence, with the advent of Computer Aided Diagnosis (CAD) Techniques, identifying the normal versus alcoholic EEG signals has been of great utility in the medical field. In this work, we perform the initial clustering of the alcoholic EEG signals by means of using Correlation Dimension (CD) for easy feature extraction and then the suitable features are selected in it by means of employing various distance metrics like correlation distance, city block distance, cosine distance and chebyshev distance. Proceeding in such a methodology aids and assures that a good discrimination could be achieved between normal and alcoholic EEG signals using non-linear features. Finally, classification is then carried out with the suitable classifiers chosen such as Adaboost.RT classifier, the proposed Modified Adaboost.RT classifier by means of introducing Ridge and Lasso based soft thresholding technique, Random Forest with bootstrap resampling technique, Artificial Neural Networks (ANN) such as Radial Basis Functions (RBF) and Multi-Layer Perceptron (MLP), Support Vector Machine (SVM) with Linear, Polynomial and RBF Kernel, Naïve Bayesian Classifier (NBC), K-means classifier, and K Nearest Neighbor (KNN) Classifier and the results are analyzed. Results report a comparatively high classification accuracy of about 98.99% when correlation distance metrics are utilized with CD and the proposed Modified Adaboost.RT classifier using Ridge based soft thresholding technique.

16.
Biomed Res Int ; 2020: 8427574, 2020.
Article En | MEDLINE | ID: mdl-33102596

One of the deadliest diseases which affects the large intestine is colon cancer. Older adults are typically affected by colon cancer though it can happen at any age. It generally starts as small benign growth of cells that forms on the inside of the colon, and later, it develops into cancer. Due to the propagation of somatic alterations that affects the gene expression, colon cancer is caused. A standardized format for assessing the expression levels of thousands of genes is provided by the DNA microarray technology. The tumors of various anatomical regions can be distinguished by the patterns of gene expression in microarray technology. As the microarray data is too huge to process due to the curse of dimensionality problem, an amalgamated approach of utilizing bilevel feature selection techniques is proposed in this paper. In the first level, the genes or the features are dimensionally reduced with the help of Multivariate Minimum Redundancy-Maximum Relevance (MRMR) technique. Then, in the second level, six optimization techniques are utilized in this work for selecting the best genes or features before proceeding to classification process. The optimization techniques considered in this work are Invasive Weed Optimization (IWO), Teaching Learning-Based Optimization (TLBO), League Championship Optimization (LCO), Beetle Antennae Search Optimization (BASO), Crow Search Optimization (CSO), and Fruit Fly Optimization (FFO). Finally, it is classified with five suitable classifiers, and the best results show when IWO is utilized with MRMR, and then classified with Quadratic Discriminant Analysis (QDA), a classification accuracy of 99.16% is obtained.


Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Algorithms , Discriminant Analysis , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Oligonucleotide Array Sequence Analysis/methods
17.
Diagnostics (Basel) ; 10(10)2020 Sep 28.
Article En | MEDLINE | ID: mdl-32998452

The main aim of this paper is to optimize the output of diagnosis of Cardiovascular Disorders (CVD) in Photoplethysmography (PPG) signals by utilizing a fuzzy-based approach with classification. The extracted parameters such as Energy, Variance, Approximate Entropy (ApEn), Mean, Standard Deviation (STD), Skewness, Kurtosis, and Peak Maximum are obtained initially from the PPG signals, and based on these extracted parameters, the fuzzy techniques are incorporated to model the Cardiovascular Disorder(CVD) risk levels from PPG signals. Optimization algorithms such as Differential Search (DS), Shuffled Frog Leaping Algorithm (SFLA), Wolf Search (WS), and Animal Migration Optimization (AMO) are implemented to the fuzzy modeled levels to optimize them further so that the PPG cardiovascular classification can be characterized well. This kind of approach is totally new in PPG signal classification, and the results show that when fuzzy-inspired modeling is implemented with WS optimization and classified with the Radial Basis Function (RBF) classifier, a classification accuracy of 94.79% is obtained for normal cases. When fuzzy-inspired modeling is implemented with AMO and classified with the Support Vector Machine-Radial Basis Function (SVM-RBF) classifier, a classification accuracy of 95.05% is obtained for CVD cases.

18.
Asian Pac J Cancer Prev ; 21(1): 179-183, 2020 Jan 01.
Article En | MEDLINE | ID: mdl-31983182

OBJECTIVE: The survival rates of breast cancer are increasing as screening and diagnosis improve. The removal of noise is revealed to be a significant step for automatic - computer aided detection (CAD) of microcalcification in digital mammography. METHODS: In this paper, a combined approach for eradicating impulse noise from digital mammograms is proposed. The process is achieved in two stages, detection of noise followed by filtering of noise. The detection of noise is carried out by using Modified Robust Outlyingness Ratio (mROR) trailed by an extended NL (Non-Local)-means filter for filtering mechanism. RESULTS: According to the value of mROR, all pixels in mammogram images are divided into four distinct groups. In each cluster, many decision rules are then applied for detecting the impulse noise. Filtering is done with NL-means filter by providing a reference mammogram image. CONCLUSION: The comparative analysis and evaluated results are compared with some existing filters which indicate that the proposed structure outperforms the analysed result of others.


Algorithms , Breast Neoplasms/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Mammography/instrumentation , Mammography/methods , Signal Processing, Computer-Assisted/instrumentation , Breast Neoplasms/diagnostic imaging , Female , Humans , Prognosis , Signal-To-Noise Ratio
19.
Asian Pac J Cancer Prev ; 20(12): 3777-3781, 2019 Dec 01.
Article En | MEDLINE | ID: mdl-31870121

OBJECTIVE: The death rate of breast tumour is falling as there is progress in its research area. However, it is the most common disease among women. It is a great challenge in designing a machine learning model to evaluate the performance of the classification of breast tumour. METHODS: Implementing an efficient classification methodology will support in resolving the complications in analyzing breast cancer. This proposed model employs two machine learning (ML) algorithms for the categorization of breast tumour; Decision Tree and K-Nearest Neighbour (KNN) algorithm is used for the breast tumour classification. RESULT: This classification includes the two levels of disease as benign or malignant. These two machine learning algorithms are verified using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset after feature selection using Principal Component Analysis (PCA). The comparison of these two ML algorithms is done using the standard performance metrics. CONCLUSION: The comparative analysis results indicate that the KNN classifier outperforms the result of the decision-tree classifier in the breast cancer classification.
.


Algorithms , Databases, Factual , Decision Trees , Machine Learning , Neoplasms/classification , Neoplasms/diagnosis , Cluster Analysis , Female , Humans , Principal Component Analysis , Prognosis , Support Vector Machine
20.
Asian Pac J Cancer Prev ; 20(8): 2333-2337, 2019 08 01.
Article En | MEDLINE | ID: mdl-31450903

Objective: Breast cancer is the most common invasive severity which leads to the second primary cause of death among women. The objective of this paper is to propose a computer-aided approach for the breast cancer classification from the digital mammograms. Methods: Designing an effective classification approach will assist in resolving the difficulties in analyzing digital mammograms. The proposed work utilized the Mammogram Image Analysis Society (MIAS) database for the analysis of breast cancer. Five distinct wavelet families are used for extraction of features from the mammograms of MIAS database. These extracted features are statistical in nature and served as input to the Linear Discriminant Analysis (LDA) and Cuckoo-Search Algorithm (CSA) classifiers. Results: Error rate, Sensitivity, Specificity and Accuracy are the performance measures used and the obtained results clearly state that the CSA used as a classifier affords an accuracy of 97.5% while compared with the LDA classifier. Conclusion: The results of comparative performance analysis show that the CSA classifier outperforms the performance of LDA in terms of breast cancer classification.


Algorithms , Breast Neoplasms/classification , Breast Neoplasms/diagnosis , Diagnosis, Computer-Assisted/methods , Discriminant Analysis , Image Interpretation, Computer-Assisted/methods , Mammography/methods , Breast Neoplasms/diagnostic imaging , Databases, Factual , Female , Humans , Prognosis
...