Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Int J Biol Macromol ; 253(Pt 8): 127628, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37884254

MytiLec-1, the recombinant form of a mussel lectin from Mytillus galloprovincialis, was purified by affinity chromatography and showed the maximum hemagglutination activity at a temperature range of 10 °C to 40 °C and at pH 7.0 to 9.0. Denaturants like urea and acidic-guanidine inhibited its hemagglutination activity significantly. MytiLec-1 was found to be metal-independent though Ca2+ slightly increased the activity of chelated MytiLec-1. The lectin suppressed 65 % growth of Pseudomonas aeruginosa (ATCC 47085) at 200 µg/ml and reduced the formation of biofilm (15 % at 200 µg/ml). Comparing to Shigella sonnei (ATCC 29930), Shigella boydii (ATCC 231903) and Shigella dysenteriae (ATCC 238135), Bacillus cereus (ATCC 14579) was slightly more sensitive to MytiLec-1. At a concentration of 200 µg/disc and 100 µg/ml, MytiLec-1 prevented the growth of Aspergillus niger and agglutinated the spores of Aspergillus niger and Trichoderma reesei, respectively. Amino acid sequences, physicochemical properties and antimicrobial activities of MytiLec-1 were compared with three other lectins (CGL, MTL and MCL from Crenomytilus grayanus, Mytilus trossulas and Mytilus californianus, respectively) from the mytilectin family of bivalve mollusks. It reconfirms the function of these lectins to recognize pathogens and perform important roles in innate immune response of mussels.


Anti-Infective Agents , Mytilus , Animals , Lectins/chemistry , Mytilus/chemistry , Disaccharides/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism
2.
Sci Rep ; 13(1): 13531, 2023 08 19.
Article En | MEDLINE | ID: mdl-37598270

Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes mild cold-like symptoms and severe lower respiratory tract infections, causing hospitalizations in children, the elderly and immunocompromised individuals. Due to genetic variability, this virus causes life-threatening pneumonia and bronchiolitis in young infants. Thus, we examined 3600 whole genome sequences submitted to GISAID by 31 December 2022 to examine the genetic variability of RSV. While RSVA and RSVB coexist throughout RSV seasons, RSVA is more prevalent, fatal, and epidemic-prone in several countries, including the United States, the United Kingdom, Australia, and China. Additionally, the virus's attachment glycoprotein and fusion protein were highly mutated, with RSVA having higher Shannon entropy than RSVB. The genetic makeup of these viruses contributes significantly to their prevalence and epidemic potential. Several strain-specific SNPs co-occurred with specific haplotypes of RSVA and RSVB, followed by different haplotypes of the viruses. RSVA and RSVB have the highest linkage probability at loci T12844A/T3483C and G13959T/C2198T, respectively. The results indicate that specific haplotypes and SNPs may significantly affect their spread. Overall, this analysis presents a promising strategy for tracking the evolving epidemic situation and genetic variants of RSV, which could aid in developing effective control, prophylactic, and treatment strategies.


Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Aged , Infant , Humans , Genome-Wide Association Study , Respiratory Syncytial Virus, Human/genetics , Australia/epidemiology , China
3.
Bioinform Biol Insights ; 17: 11779322231184024, 2023.
Article En | MEDLINE | ID: mdl-37424709

Genomes may now be sequenced in a matter of weeks, leading to an influx of "hypothetical" proteins (HP) whose activities remain a mystery in GenBank. The information included inside these genes has quickly grown in prominence. Thus, we selected to look closely at the structure and function of an HP (AFF25514.1; 246 residues) from Pasteurella multocida (PM) subsp. multocida str. HN06. Possible insights into bacterial adaptation to new environments and metabolic changes might be gained by studying the functions of this protein. The PM HN06 2293 gene encodes an alkaline cytoplasmic protein with a molecular weight of 28352.60 Da, an isoelectric point (pI) of 9.18, and an overall average hydropathicity of around -0.565. One of its functional domains, tRNA (adenine (37)-N6)-methyltransferase TrmO, is a S-adenosylmethionine (SAM)-dependent methyltransferase (MTase), suggesting that it belongs to the Class VIII SAM-dependent MTase family. The tertiary structures represented by HHpred and I-TASSER models were found to be flawless. We predicted the model's active site using the Computed Atlas of Surface Topography of Proteins (CASTp) and FTSite servers, and then displayed it in 3 dimensional (3D) using PyMOL and BIOVIA Discovery Studio. Based on molecular docking (MD) results, we know that HP interacts with SAM and S-adenosylhomocysteine (SAH), 2 crucial metabolites in the tRNA methylation process, with binding affinities of 7.4 and 7.5 kcal/mol, respectively. Molecular dynamic simulations (MDS) of the docked complex, which included only modest structural adjustments, corroborated the strong binding affinity of SAM and SAH to the HP. Evidence for HP's possible role as an SAM-dependent MTase was therefore given by the findings of Multiple sequence alignment (MSA), MD, and molecular dynamic modeling. These in silico data suggest that the investigated HP might be used as a useful adjunct in the investigation of Pasteurella infections and the development of drugs to treat zoonotic pasteurellosis.

4.
Molecules ; 27(7)2022 Mar 24.
Article En | MEDLINE | ID: mdl-35408488

Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein. Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism, and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that have better binding affinity to the target protein. The ADME and toxicity properties indicated good pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the compounds identified better binding stability of the compounds to the desired protein. To sum up, the phytoconstituents from two plants showed better anticancer activity against TS protein that can be further developed as an anti-CRC drug.


Antineoplastic Agents , Avicennia , Catharanthus , Colorectal Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Avicennia/metabolism , Catharanthus/metabolism , Colorectal Neoplasms/drug therapy , Humans , Molecular Docking Simulation , Thymidylate Synthase/metabolism
5.
Glycoconj J ; 39(2): 261-290, 2022 04.
Article En | MEDLINE | ID: mdl-35037163

Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl ß-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.


Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Esters/pharmacology , Galactose , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , SARS-CoV-2
6.
Cureus ; 13(10): e18488, 2021 Oct.
Article En | MEDLINE | ID: mdl-34692259

Nowadays, chronic kidney disease (CKD) and osteoporosis have become crucial health-related issues globally. CKD-induced osteoporosis is a systemic disease characterized by the disruption of mineral, hormone, and vitamin homeostasis that elevates the likelihood of fracture. Here, we review recent studies on the association of CKD and osteoporosis. In particular, we focus on the pathogenesis of CKD-associated osteoporosis, including the homeostasis and pathways of several components such as parathyroid hormone, calcium, phosphate, vitamin D, fibroblast growth factor, and klotho, as well as abnormal bone mineralization, remodeling, and turnover. In addition, we explore the diagnostic tools and possible therapeutic approaches for the management and prevention of CKD-associated osteoporosis. Patients with CKD show higher osteoporosis prevalence, greater fracture rate, increased morbidity and mortality, and an elevated occurrence of hip fracture. We also rule out that increased severity of CKD is related to a more severe condition of osteoporosis. Furthermore, supplements such as calcium and vitamin D as well as lifestyle modifications such as exercise and cessation of smoking and alcohol help in fracture prevention. However, new approaches and advancements in treatment are needed to reduce the fracture risk in patients with CKD. Therefore, further collaborative multidisciplinary research is needed in this regard.

7.
Mar Drugs ; 19(7)2021 Jul 14.
Article En | MEDLINE | ID: mdl-34356819

In recent years, there has been considerable interest in lectins from marine invertebrates. In this study, the biological activities of a lectin protein isolated from the eggs of Sea hare (Aplysia kurodai) were evaluated. The 40 kDa Aplysia kurodai egg lectin (or AKL-40) binds to D-galacturonic acid and D-galactose sugars similar to previously purified isotypes with various molecular weights (32/30 and 16 kDa). The N-terminal sequence of AKL-40 was similar to other sea hare egg lectins. The lectin was shown to be moderately toxic to brine shrimp nauplii, with an LC50 value of 63.63 µg/mL. It agglutinated Ehrlich ascites carcinoma cells and reduced their growth, up to 58.3% in vivo when injected into Swiss albino mice at a rate of 2 mg/kg/day. The morphology of these cells apparently changed due to AKL-40, while the expression of apoptosis-related genes (p53, Bax, and Bcl-XL) suggested a possible apoptotic pathway of cell death. AKL-40 also inhibited the growth of human erythroleukemia cells, probably via activating the MAPK/ERK pathway, but did not affect human B-lymphoma cells (Raji) or rat basophilic leukemia cells (RBL-1). In vitro, lectin suppressed the growth of Ehrlich ascites carcinoma and U937 cells by 37.9% and 31.8%, respectively. Along with strong antifungal activity against Talaromyces verruculosus, AKL showed antibacterial activity against Staphylococcus aureus, Shigella sonnei, and Bacillus cereus whereas the growth of Escherichia coli was not affected by the lectin. This study explores the antiproliferative and antimicrobial potentials of AKL as well as its involvement in embryo defense of sea hare.


Anti-Bacterial Agents/pharmacology , Aplysia , Lectins/pharmacology , Animals , Aquatic Organisms , Eggs , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
8.
Molecules ; 26(16)2021 Aug 07.
Article En | MEDLINE | ID: mdl-34443386

Lectins facilitate cell-cell contact and are critical in many cellular processes. Studying lectins may help us understand the mechanisms underlying tissue regeneration. We investigated the localization of an R-type lectin in a marine annelid (Perinereis sp.) with remarkable tissue regeneration abilities. Perinereis nuntia lectin (PnL), a galactose-binding lectin with repeating Gln-X-Trp motifs, is derived from the ricin B-chain. An antiserum was raised against PnL to specifically detect a 32-kDa lectin in the crude extracts from homogenized lugworms. The antiserum detected PnL in the epidermis, setae, oblique muscle, acicula, nerve cord, and nephridium of the annelid. Some of these tissues and organs also produced Galactose (Gal) or N-acetylgalactosamine (GalNAc), which was detected by fluorescent-labeled plant lectin. These results indicated that the PnL was produced in the tissues originating from the endoderm, mesoderm, and ectoderm. Besides, the localizing pattern of PnL partially merged with the binding pattern of a fluorescent-labeled mushroom lectin that binds to Gal and GalNAc. It suggested that PnL co-localized with galactose-containing glycans in Annelid tissue; this might be the reason PnL needed to be extracted with haptenic sugar, such as d-galactose, in the buffer. Furthermore, we found that a fluorescein isothiocyanate-labeled Gal/GalNAc-binding mushroom lectin binding pattern in the annelid tissue overlapped with the localizing pattern of PnL. These findings suggest that lectin functions by interacting with Gal-containing glycoconjugates in the tissues.


Annelida/metabolism , Aquatic Organisms/metabolism , Lectins/metabolism , Animals , Complex Mixtures , Ligands , Polysaccharides/metabolism
9.
FEBS J ; 287(12): 2612-2630, 2020 06.
Article En | MEDLINE | ID: mdl-31769916

A 15-kDa lectin, termed SeviL, was isolated from Mytilisepta virgata (purplish bifurcate mussel). SeviL forms a noncovalent dimer that binds strongly to ganglio-series GM1b oligosaccharide (Neu5Acɑ2-3Galß1-3GalNAcß1-4Galß1-4Glc) and its precursor, asialo-GM1 (Galß1-3GalNAcß1-4Galß1-4Glc). SeviL also interacts weakly with the glycan moiety of SSEA-4 hexaose (Neu5Acα2-3Galß1-3GalNAcß1-3Galα1-4Galß1-4Glc). A partial protein sequence of the lectin was determined by mass spectrometry, and the complete sequence was identified from transcriptomic analysis. SeviL, consisting of 129 amino acids, was classified as an R(icin B)-type lectin, based on the presence of the QxW motif characteristic of this fold. SeviL mRNA is highly expressed in gills and, in particular, mantle rim tissues. Orthologue sequences were identified in other species of the family Mytilidae, including Mytilus galloprovincialis, from which lectin MytiLec-1 was isolated and characterized in our previous studies. Thus, mytilid species contain lectins belonging to at least two distinct families (R-type lectins and mytilectins) that have a common ß-trefoil fold structure but differing glycan-binding specificities. SeviL displayed notable cytotoxic (apoptotic) effects against various cultured cell lines (human breast, ovarian, and colonic cancer; dog kidney) that possess asialo-GM1 oligosaccharide at the cell surface. This cytotoxic effect was inhibited by the presence of anti-asialo-GM1 oligosaccharide antibodies. With HeLa ovarian cancer cells, SeviL showed dose- and time-dependent activation of kinase MKK3/6, p38 MAPK, and caspase-3/9. The transduction pathways activated by SeviL via the glycosphingolipid oligosaccharide were triggered apoptosis. DATABASE: Nucleotide sequence data have been deposited in the GenBank database under accession numbers MK434191, MK434192, MK434193, MK434194, MK434195, MK434196, MK434197, MK434198, MK434199, MK434200, and MK434201.


G(M1) Ganglioside/analogs & derivatives , Lectins/chemistry , Lectins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mytilidae/chemistry , Oligosaccharides/metabolism , Animals , Binding Sites , G(M1) Ganglioside/chemistry , G(M1) Ganglioside/metabolism , HeLa Cells , Humans , Lectins/isolation & purification , Mitogen-Activated Protein Kinases/chemistry , Mytilidae/metabolism , Oligosaccharides/chemistry , Species Specificity
10.
PLoS One ; 14(3): e0211875, 2019.
Article En | MEDLINE | ID: mdl-30875380

BACKGROUND: Maternal and child health is one of the most important issues in a developing country like Bangladesh. This study evaluates the trends in maternal and child health indicators of Bangladesh. METHODS: The secondary data used in this study was extracted from the World Bank Dataset. The selected indicators were maternal mortality ratio (MMR), under-five children mortality and neonatal mortality rate, and prevalence of stunting and wasting of under-five children. Trend analysis technique and ARIMA forecasting models were used in this study to find currents trend and predict the future of selected indicators. RESULTS: This study revealed clear evidence that neonatal, under-five child and maternal mortality in Bangladesh had been gradually decreasing during the last two and half decades. The decreasing rate of these indicators suggests that it should be possible to achieve the national target of sustainable development goals (SDGs) of Bangladesh by 2021. While, it was observed that the prevalence of underweight, stunting and wasting among under-five children was still high, these indicators have been slowly decreasing over time. The decreasing rate of these indicators displayed that without guided measures, the Bangladesh government would not be able to achieve the target goal of child malnutrition by 2021 under SDG-2.2. CONCLUSION: It is recommended that the government, as well as non-government health organizations (NGOs), and other policy makers should provide programs that are effective so that the national target goals can be achieved by the year 2030. Consequently, our findings should assist in the achievement of the national goals in Bangladesh regarding these health issues.


Child Health/trends , Maternal Health/trends , Bangladesh/epidemiology , Child Mortality/trends , Child Nutrition Disorders/epidemiology , Child Nutrition Disorders/prevention & control , Child, Preschool , Female , Forecasting , Growth Disorders/epidemiology , Humans , Infant , Infant Mortality/trends , Infant, Newborn , Maternal Mortality/trends , Prevalence , Wasting Syndrome/epidemiology
11.
Front Public Health ; 6: 50, 2018.
Article En | MEDLINE | ID: mdl-29536001

The scarcity of hygienic drinking water is a normal phenomenon in the coastal areas of Bangladesh due to the high salinity of ground water. The inhabitants of this locality, therefore, live on alternative supplies of water including rain-fed pond water, and rainwater with persistent complex microbial interactions therein, often contaminated with life-threatening pathogens. Hence, this study was aimed at analyzing the prevalence of Vibrio cholerae (Vc) in the alternative drinking waters of Mathbaria, a coastal subdistrict neighboring the Bay of Bengal, the efficacy of pond sand filter (PSF) and the co-association among Bacillus-like spore formers (Sf) and Vc. Vc presumably entrapped into the membrane filter was enriched in alkaline peptone water medium and was isolated on selective thiosulfate-citrate-bile salts-sucrose and taurocholate-tellurite-gelatin agar media. They were finally identified by immunochromatographic one step rapid test and serology test. A total of 26% Vc positive samples were obtained out of 100 [ponds-48, household (HH)-29, and PSFs-23] where 13% cases were pathogenic (Vc O1) and 13% were non-pathogenic (Vc non-O1/non-O139). The distribution of Vc as observed was 33, 26, and 13.8% in waters derived from pond surface, PSF, and HH reservoirs, respectively, and for pathogenic type, it was 62.5%, 50%, and nil, respectively. Although none of the samples was identified with pathogenic Vc O139, the statistics represents a significant and augmentative risk of cholera outbreak in the focused area. The antibiotic sensitivity pattern in this study resembled the trend observed during last few years for Vc. The PSF demonstrated its inability to remove Vc from any of the samples and in addition, the filter itself was evidenced to be the source of pathogens and spores in further contamination and transmission. The development of biofilm in the PSF could be hypothesized as the reservoir in contaminating pathogen-free water samples. From the test of homogeneity, the risk levels of alternative water sources were estimated equal regarding Vc. Simultaneously, it was determined statistically that the prevalence of Vc, by no means, is influenced by Bacillus-like Sf be it for pond surface, HH, or PSF derived water.

12.
Mar Drugs ; 14(5)2016 May 11.
Article En | MEDLINE | ID: mdl-27187419

MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a ß-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic "mytilectin family" in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5' end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5'UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3'UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels.


Bivalvia/genetics , DNA, Complementary/genetics , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lectins/genetics , Mytilus/genetics , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Amino Acid Sequence , Animals , Base Sequence , Bivalvia/immunology , Exons/genetics , Genome/genetics , Immunity, Innate/immunology , Lectins/immunology , Mytilus/immunology , Open Reading Frames/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Sequence Alignment
14.
Toxicol Ind Health ; 32(6): 1106-13, 2016 Jun.
Article En | MEDLINE | ID: mdl-25216801

This study presents an overview of the existence and effects of six heavy metals, chromium (Cr), lead (Pb), cadmium (Cd), mercury (Hg), manganese (Mn), and aluminum (Al), in tannery effluents released to the Buriganga River in Dhaka, Bangladesh. The pollutants were found in three different sources, such as effluents from tanneries, contaminated river water and three species of fish-climbing perch (Anabas testudineus), spotted snakehead (Channa punctata), and Black tilapia (Oreochromis mossambicus) caught from the river. Tannery effluents, water, and fish samples were collected from three different factories, five sample stations, and three different harvesting points, respectively. Effluents from all three factories contained significant amounts of heavy metals, especially Cr (374.19 ppm in average), whereas lesser amounts were found in the tissues of the three fish species studied. The trends in tissue elemental concentrations of fish were Cr > Pb > Al > Hg > Mn > Cd. In most cases (Cr, Cd, Mn, and Al), heavy metal concentrations were found to be greater in climbing perch than in Black tilapia and spotted snakehead. Although the river water contained high concentrations of harmful heavy metals, the fish species under study had concentrations well below the permissible Food and Agriculture Organization/World Health Organization levels for those metals and seemed to be safe for human consumption.


Environmental Monitoring , Industrial Waste/analysis , Lead/analysis , Metals, Heavy/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Aluminum/analysis , Animals , Bangladesh , Cadmium/analysis , Chromium/analysis , Fishes , Manganese/analysis , Mercury/analysis , Tanning
15.
Mar Drugs ; 13(12): 7377-89, 2015 Dec 14.
Article En | MEDLINE | ID: mdl-26694420

MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galß1-4Glc). MytiLec revealed ß-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt's lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface.


Apoptosis/drug effects , Burkitt Lymphoma/drug therapy , Lectins/pharmacology , Animals , Burkitt Lymphoma/pathology , Butadienes/pharmacology , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Humans , K562 Cells , Lectins/isolation & purification , Mitogen-Activated Protein Kinases/metabolism , Mytilus/metabolism , Nitriles/pharmacology , Trisaccharides/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Asian Pac J Trop Biomed ; 4(4): 306-11, 2014 Apr.
Article En | MEDLINE | ID: mdl-25182556

OBJECTIVE: To investigate and compare the resistance and sensitivity of Salmonella typhi samples to commonly used antibiotics in three major divisions of Bangladesh and to evaluate the gradually developing resistance pattern. METHODS: The antibiotic susceptibility of 70 clinical isolates collected from blood, sputum, urine and pus samples were identified by specific antisera and with standard biochemical tests. The patients were divided into 5 age groups. Susceptibility and resistance was also tested by Kirby-Bauer disc diffusion method using 12 regularly used antibiotics. RESULTS: Antibiotic susceptibility test demonstrated that 64.28% isolates of Salmonella typhi were multidrug resistant. Present study suggests that the clinical samples were mostly resistant against nalidixic acid with all age groups and in all three divisions with similar resistance pattern. Resistance is more common among adult people (30-40 years) and children (0-10 years). Salmonella typhi was mostly sensitive against gentamycin, chloramphenicol and ciprofloxacin. CONCLUSIONS: Although the population density of Dhaka region is markedly higher than Rajshahi and Chittagong regions, no significant difference in resistance pattern was found. The rate of multidrug resistance is a matter of concern. Physicians should reconsider before prescribing nalidixic acid and cefixime. Further molecular study is needed to reveal the genomic and proteomic basis of resistance.

17.
Molecules ; 19(9): 13990-4003, 2014 Sep 05.
Article En | MEDLINE | ID: mdl-25197935

A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.


Aplysia/chemistry , Erythrocytes/physiology , Galectins/chemistry , Hemolysis/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Erythrocytes/drug effects , Galectins/isolation & purification , Galectins/pharmacology , Hemolytic Agents/pharmacology , Microbial Sensitivity Tests , Ovum/chemistry , Rabbits , Streptococcus pyogenes/drug effects , Streptolysins/pharmacology
18.
Article Zh | WPRIM | ID: wpr-672867

Objective: To investigate and compare the resistance and sensitivity of Salmonella typhi samples to commonly used antibiotics in three major divisions of Bangladesh and to evaluate the gradually developing resistance pattern. Methods:The antibiotic susceptibility of 70 clinical isolates collected from blood, sputum, urine and pus samples were identified by specific antisera and with standard biochemical tests. The patients were divided into 5 age groups. Susceptibility and resistance was also tested by Kirby-Bauer disc diffusion method using 12 regularly used antibiotics. Results:Antibiotic susceptibility test demonstrated that 64.28% isolates of Salmonella typhi were multidrug resistant. Present study suggests that the clinical samples were mostly resistant against nalidixic acid with all age groups and in all three divisions with similar resistance pattern. Resistance is more common among adult people (30-40 years) and children (0-10 years).Salmonella typhi was mostly sensitive against gentamycin, chloramphenicol and ciprofloxacin. Conclusions: Although the population density of Dhaka region is markedly higher than Rajshahi and Chittagong regions, no significant difference in resistance pattern was found. The rate of multidrug resistance is a matter of concern. Physicians should reconsider before prescribing nalidixic acid and cefixime. Further molecular study is needed to reveal the genomic and proteomic basis of resistance.

19.
Fitoterapia ; 77(4): 290-5, 2006 Jun.
Article En | MEDLINE | ID: mdl-16701962

From Sarcolobus globosus, two rotenoids (villosinol and 6-oxo-6a,12a-dehydrodeguelin), one isoflavone (genistin) and four phenolic glycosides (vanillic acid 4-O-beta-d-glucoside, glucosyringic acid, tachioside and isotachioside) were identified for the first time from this species. Extracts and compounds from S. globosus were evaluated for their DPPH radical scavenging and 15-lipoxygenase (15-LO) inhibitory activities. All tested rotenoids were found to inhibit 15-LO, while they lacked DPPH radical scavenging effect.


Antioxidants/pharmacology , Apocynaceae , Arachidonate 15-Lipoxygenase/drug effects , Enzyme Inhibitors/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Antioxidants/chemistry , Biphenyl Compounds , Enzyme Inhibitors/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Humans , Isoflavones/chemistry , Isoflavones/pharmacology , Lipoxygenase Inhibitors , Phenols/chemistry , Phenols/pharmacology , Picrates/chemistry , Plant Extracts/chemistry , Rotenone/chemistry , Rotenone/pharmacology
20.
Fitoterapia ; 77(4): 296-9, 2006 Jun.
Article En | MEDLINE | ID: mdl-16698190

Two triglycerides, both bearing polyunsaturated fatty acid residues, were isolated from the hexane extract of Urena lobata. One of them is characterized by the presence of three different polyunsaturated fatty acids. Their structures were studied with spectral methods.


Malvaceae , Phytotherapy , Plant Extracts/chemistry , Triglycerides/chemistry , Humans , Magnetic Resonance Spectroscopy
...