Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Bioconjug Chem ; 34(5): 911-921, 2023 05 17.
Article En | MEDLINE | ID: mdl-37119235

G-Quadruplex DNA structures have attracted increasing attention due to their biological roles and potential as targets for the development of new drugs. While most guanine-rich sequences in the genome have the potential to form monomeric G-quadruplexes, certain sequences have enough guanine-tracks to give rise to multimeric quadruplexes. One of these sequences is the human telomere where tandem repeats of TTAGGG can lead to the formation of two or more adjacent G-quadruplexes. Herein we report on the modular synthesis via click chemistry of dimeric metal-salphen complexes (with NiII and PtII) bridged by either polyether or peptide linkers. We show by circular dichroism (CD) spectroscopy that they generally have higher selectivity for dimeric vs monomeric G-quadruplexes. The emissive properties of the PtII-salphen dimeric complexes have been used to study their interactions with monomeric and dimeric G-quadruplexes in vitro as well as to study their cellular uptake and localization.


Coordination Complexes , G-Quadruplexes , Humans , Coordination Complexes/chemistry , DNA/chemistry , Polymers , Guanine/chemistry , Telomere , Circular Dichroism
2.
Chem Sci ; 12(27): 9485-9493, 2021 Jul 14.
Article En | MEDLINE | ID: mdl-34349923

One of the key hallmarks of Alzheimer's disease is the aggregation of the amyloid-ß peptide to form fibrils. Consequently, there has been great interest in studying molecules that can disrupt amyloid-ß aggregation. While a handful of molecules have been shown to inhibit amyloid-ß aggregation in vitro, there remains a lack of in vivo data reported due to their inability to cross the blood-brain barrier. Here, we investigate a series of new metal complexes for their ability to inhibit amyloid-ß aggregation in vitro. We demonstrate that octahedral cobalt complexes with polyaromatic ligands have high inhibitory activity thanks to their dual binding mode involving π-π stacking and metal coordination to amyloid-ß (confirmed via a range of spectroscopic and biophysical techniques). In addition to their high activity, these complexes are not cytotoxic to human neuroblastoma cells. Finally, we report for the first time that these metal complexes can be safely delivered across the blood-brain barrier to specific locations in the brains of mice using focused ultrasound.

3.
Chem Sci ; 9(14): 3459-3469, 2018 Apr 14.
Article En | MEDLINE | ID: mdl-29780475

Guanine-rich DNA sequences can fold into quadruple-stranded structures known as G-quadruplexes. These structures have been proposed to play important biological roles and have been identified as potential drug targets. As a result, there is increasing interest in developing small molecules that can bind to G-quadruplexes. So far, these efforts have been mostly limited to conventional batch synthesis. Furthermore, no quick on-line method to assess new G-quadruplex binders has been developed. Herein, we report on two new microfluidic platforms to: (a) readily prepare G-quadruplex binders (based on metal complexes) in flow, quantitatively and without the need for purification before testing; (b) a microfluidic platform (based on FRET melting assays of DNA) that enables the real-time and on-line assessment of G-quadruplex binders in continuous flow.

...