Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Food Microbiol ; 418: 110732, 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38728973

Trematodes belonging to the family Echinostomatidae are food-borne parasites which cause echinostomiasis in animals and humans. This is a global public health issue, particularly in East and Southeast Asia. A method to detect the infective stage of Echinostomatidae species is required to prevent transmission to humans. In this study, a loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay was developed for visual detection of the metacercarial stage in edible snails of the genus Filopaludina from local markets in Thailand. The LAMP-LFD method can be performed within 70 min at a consistent temperature of 66 °C, and the results can be interpreted with the naked eye. The detection limits of the assay using Echinostoma mekongi, E. macrorchis, E. miyagawai and Hypoderaeum conoideum genomic DNA were equal between the four species at 50 pg/µL. A specificity evaluation demonstrated that the LAMP-LFD assay had no cross-reaction with another parasite (Thapariella species) or with the snail host species (Filopaludina martensi martensi, F. sumatrensis speciosa, and F. s. polygramma). Clinical test assessments were compared to microscopic examination in 110 edible snail samples. The clinical sensitivity and specificity of the tests were 84.62 % and 100 %, respectively, with a strong level of agreement based on the kappa statistic and the results of both methods were not significantly different (p > 0.05) per McNemar's test. The test successfully developed in this study may be useful for the detection of the metacercarial stage in edible snails for epidemiological investigations, control, surveillance, and to prevent future echinostomiasis health issues.


Nucleic Acid Amplification Techniques , Snails , Animals , Nucleic Acid Amplification Techniques/methods , Snails/parasitology , Echinostomatidae/isolation & purification , Echinostomatidae/genetics , Echinostomatidae/classification , Thailand , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Food Parasitology
2.
Parasitol Res ; 123(2): 126, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38326433

Colorimetric detection can be applied to differentiate between positive and negative conditions. It can be coupled with loop-mediated isothermal amplification to diagnose rumen fluke or paramphistome infection, also called colorimetric PAR-LAMP. This study conducted LAMP using three candidate indicator dyes, namely malachite green (MLG), methyl green (MTG), and neutral red (NTR), and the results were observed by the naked eye. The dye concentration was optimized to obtain the most pronounced positive-negative result discrimination. Subsequently, we conducted target sensitivity tests using the DNA of Fischoederius elongatus at different concentrations. To validate the detection accuracy, the result was confirmed by gel electrophoresis. The sensitivity test presented the lowest detectable DNA concentration or limit of detection (LOD), with 1 pg for MLG, 0.5 ng for MTG, and 50 pg for NTR. Different LODs revealed inhibition of LAMP reaction and reduced efficiency of result presentation for colorimetric-based detection, particularly NTR and MTG. For MLG-LAMP, we observed no cross-reaction of non-target DNA and improved reaction with the DNA of Fischoederius cobboldi and Calicophoron sp., with multi-detection. In addition, naked eye observation and agarose gel electrophoresis (AGE) evaluation of the MLG-LAMP results showed a moderate and strong agreement with LAMP-AGE and microscopic examinations. Based on our results, colorimetric PAR-LAMP is a rapid, comfortable, and point-of-care procedure for the diagnosis of paramphistome infection.


Colorimetry , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Rosaniline Dyes , Animals , Sensitivity and Specificity , Colorimetry/methods , Nucleic Acid Amplification Techniques/methods , DNA
3.
Anal Biochem ; 688: 115481, 2024 May.
Article En | MEDLINE | ID: mdl-38360170

Colorimetric assays are some of the most convenient detection methods, creating discoloration in solutions that is visible to the naked eye. However, colorimetric reactions have some limitations regarding the variability in the color perception of individuals caused by factors such as color blindness, experience, and gender. Semi-quantitative chromatic analysis has been used as an alternative method to differentiate between two colors and accurately interpret the results from a numerical value, with high confidence. Therefore, we developed and determined the optimal model between Red-Green-Blue (RGB) and Commission Internationale de l'Eclairage (CIE) Lab color spaces to establish a semi-quantitative colorimetric assay via image analysis by the ImageJ program for loop-mediated isothermal amplification (LAMP), using the dyes malachite green and phenol red. The semi-quantitative colorimetric assays using the color distance values of the CIELab color space (ΔEab) were more suitable than those using the RGB color space (ΔERGB) for chromatic differentiation between positive and negative reactions in both indicator dyes, demonstrating the feasibility of this assay to be applied in the detection of a wide range of pathogens and infectious diseases.


Colorimetry , Nucleic Acid Amplification Techniques , Humans , Colorimetry/methods , Nucleic Acid Amplification Techniques/methods , Coloring Agents , Molecular Diagnostic Techniques
...