Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2912, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575617

RESUMEN

Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Frutas/metabolismo , Flores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Morfogénesis , Regulación de la Expresión Génica de las Plantas
2.
Nature ; 609(7927): 575-581, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071161

RESUMEN

The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Corriente Citoplasmática , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Mutación , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas de Translocación de Protón/metabolismo
3.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510843

RESUMEN

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015⁠) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Morfogénesis/fisiología
4.
Methods Mol Biol ; 2160: 211-221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529439

RESUMEN

Live cell imaging at high resolution of pollen tubes growing in vitro requires an experimental setup that maintains the elongated cells in a single optical plane and allows for controlled exchange of growth medium. As a low-cost alternative to lithography-based microfluidics, we developed a silicone-based spacer system that allows introducing spatial features and flexible design. These growth chambers can be cleaned and reused repeatedly.


Asunto(s)
Rastreo Celular/instrumentación , Tubo Polínico/citología , Arabidopsis , Rastreo Celular/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Siliconas
6.
Plant J ; 98(6): 1048-1059, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30821050

RESUMEN

Gravitropism is an adaptive response that orients plant growth parallel to the gravity vector. Asymmetric distribution of the phytohormone auxin is a necessary prerequisite to the tropic bending both in roots and shoots. During hypocotyl gravitropic response, the PIN3 auxin transporter polarizes within gravity-sensing cells to redirect intercellular auxin fluxes. First gravity-induced PIN3 polarization to the bottom cell membranes leads to the auxin accumulation at the lower side of the organ, initiating bending and, later, auxin feedback-mediated repolarization restores symmetric auxin distribution to terminate bending. Here, we performed a forward genetic screen to identify regulators of both PIN3 polarization events during gravitropic response. We searched for mutants with defective PIN3 polarizations based on easy-to-score morphological outputs of decreased or increased gravity-induced hypocotyl bending. We identified the number of hypocotyl reduced bending (hrb) and hypocotyl hyperbending (hhb) mutants, revealing that reduced bending correlated typically with defective gravity-induced PIN3 relocation whereas all analyzed hhb mutants showed defects in the second, auxin-mediated PIN3 relocation. Next-generation sequencing-aided mutation mapping identified several candidate genes, including SCARECROW and ACTIN2, revealing roles of endodermis specification and actin cytoskeleton in the respective gravity- and auxin-induced PIN polarization events. The hypocotyl gravitropism screen thus promises to provide novel insights into mechanisms underlying cell polarity and plant adaptive development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Gravitropismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Polaridad Celular , Sensación de Gravedad , Hipocótilo/genética , Hipocótilo/fisiología , Mutación , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Transporte de Proteínas
7.
Curr Biol ; 26(22): 3026-3032, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27773568

RESUMEN

Plants adjust their growth according to gravity. Gravitropism involves gravity perception, signal transduction, and asymmetric growth response, with organ bending as a consequence [1]. Asymmetric growth results from the asymmetric distribution of the plant-specific signaling molecule auxin [2] that is generated by lateral transport, mediated in the hypocotyl predominantly by the auxin transporter PIN-FORMED3 (PIN3) [3-5]. Gravity stimulation polarizes PIN3 to the bottom sides of endodermal cells, correlating with increased auxin accumulation in adjacent tissues at the lower side of the stimulated organ, where auxin induces cell elongation and, hence, organ bending. A curvature response allows the hypocotyl to resume straight growth at a defined angle [6], implying that at some point auxin symmetry is restored to prevent overbending. Here, we present initial insights into cellular and molecular mechanisms that lead to the termination of the tropic response. We identified an auxin feedback on PIN3 polarization as underlying mechanism that restores symmetry of the PIN3-dependent auxin flow. Thus, two mechanistically distinct PIN3 polarization events redirect auxin fluxes at different time points of the gravity response: first, gravity-mediated redirection of PIN3-mediated auxin flow toward the lower hypocotyl side, where auxin gradually accumulates and promotes growth, and later PIN3 polarization to the opposite cell side, depleting this auxin maximum to end the bending. Accordingly, genetic or pharmacological interference with the late PIN3 polarization prevents termination of the response and leads to hypocotyl overbending. This observation reveals a role of auxin feedback on PIN polarity in the termination of the tropic response.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Gravitropismo , Sensación de Gravedad , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Retroalimentación Fisiológica , Brotes de la Planta/crecimiento & desarrollo
8.
Genes Dev ; 30(4): 471-83, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26883363

RESUMEN

To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.


Asunto(s)
Arabidopsis/fisiología , División Celular , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Técnicas de Ablación , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Comunicación Celular , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/citología , Transporte de Proteínas , Transducción de Señal
9.
Curr Opin Plant Biol ; 23: 116-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25553419

RESUMEN

Subcellular trafficking and cell polarity are basic cellular processes crucial for plant development including tropisms - directional growth responses to environmental stimuli such as light or gravity. Tropisms involve auxin gradient across the stimulated organ that underlies the differential cell elongation and bending. The perception of light or gravity is followed by changes in the polar, cellular distribution of the PIN auxin transporters. Such re-specification of polar trafficking pathways is a part of the mechanism, by which plants adjust their phenotype to environmental changes. Recent genetic and biochemical studies provided the important insights into mechanisms of PIN polarization during tropisms. In this review, we summarize the present state of knowledge on dynamic PIN repolarization and its specific regulations during hypocotyl tropisms.


Asunto(s)
Polaridad Celular , Espacio Intracelular/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Tropismo , Transporte de Proteínas
10.
Nature ; 516(7529): 90-3, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25409144

RESUMEN

The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal
11.
Science ; 343(6174): 1025-8, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24578577

RESUMEN

Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane-localized transmembrane kinase (TMK) receptor-like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane-associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.


Asunto(s)
Arabidopsis/enzimología , Membrana Celular/enzimología , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Arabidopsis/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas Quinasas/genética , Transducción de Señal
12.
PLoS Genet ; 9(5): e1003540, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23737757

RESUMEN

PIN-FORMED (PIN) proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Polaridad Celular/genética , Dineínas Citoplasmáticas/genética , Proteínas Munc18/genética , Oxidorreductasas de Alcohol/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/genética , Membrana Celular/metabolismo , Endosomas/genética , Endosomas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Munc18/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas/genética , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
13.
Plant J ; 67(5): 817-26, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21569134

RESUMEN

Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Gravitropismo/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Polaridad Celular , Gravitación , Gravitropismo/genética , Sensación de Gravedad , Factores de Intercambio de Guanina Nucleótido/genética , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Proteínas Serina-Treonina Quinasas/genética , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA