Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
ACS Omega ; 9(7): 7737-7745, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38405540

This work describes a controlled and low-cost synthesis method to obtain Pb/Pb3O4 nanocomposites using synthetic zeolite 4A. The nanostructures obtained have a core-shell configuration with 5-25 nm diameters. High-resolution transmission electron microscopy (HRTEM), BF, high-angle annular dark-field annular scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) characterization techniques were used. Crystallographic planes (111), (200), and (220) for the core and planes (110) and (211) for the shell, corresponding to FCC and tetragonal structures for Pb and Pb3O4, respectively, were determined using HRTEM. The HAADF-STEM images allowed the analysis of intensity contrast images proportional to the number of atoms. XPS spectral analysis showed a 4.8 eV difference in binding energy between Pb 4f7/2 and Pb 4f5/2 for lead and lead oxide. EDS elemental mapping, XPS, and UV-vis spectroscopy analyses revealed the simultaneous presence of lead and lead oxide in the same structure. The band gap obtained for the shell was determined to be 4.50 eV. Consequently, Pb/Pb3O4 nanocomposites show a higher response to high-energy photons, making them suitable for UV photocatalysis applications.

2.
RSC Adv ; 12(43): 27948-27962, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36320262

Sunlight-driven semiconductor photocatalysts have received substantial attention due to environmental degradation, but a simple and reusable photocatalyst design has been a challenging task. Herein, we report the fabrication of a one-dimensional hollow semiconducting nanowire structure by electrospun-mediated nickel oxide nanowires (NiO NWs) as a reusable photocatalyst by direct deposition on glass substrates. The effective control of the sunlight-driven hollow nanowires as the photocatalyst has a high surface area for multiple light-harvesting and interface redox reactions, a nanostructured thin shell for accelerated charge separation, transportation, and a large length-diameter ratio for easy recycling. The electrospun NiO NWs were nest-like hollow nanostructure fibers, crystalline, and with a high density, and the synthesis and parameters were thoroughly investigated to achieve the characteristic shape of the hollow NiO NWs. Further, the photocatalytic activity of the NiO NWs on glass substrates for the selective breakdown of methylene blue (MB) under sunlight irradiation to optimize the efficiency of the NiO NWs, such as degradation techniques, concentration, and pH of the MB solution. The stability and reusability of the NiO NWs were tested successfully in several reusable cycles, with only a 2% degradation difference. The reaction rate was found to be 0.054 min-1 for MB (5 µM) and 0.033 min-1 for MB (10 µM) at pH 11 for 60 min, and the higher activity parameter was calculated to be 3.3 × 10-3 min-1 mg-1 L-1 due to their hollow structure and effective area of the NiO NWs. They contain more superficially-entrapped holes that change with chemisorbed oxyhydroxyl OH or H2O to form OH- radicals. The specific active hollow surface area rises, whereas the rate of optical-electronic hole recombination drops. The photocatalytic degradation performance of the fabricated one-step electrospun hollow NiO NW-based photocatalyst on substrates showed speed, reusability, and promoted the formation of radicals capable of decomposing organic pollutants, which were shown to have application in photocatalysis.

3.
Molecules ; 27(18)2022 Sep 13.
Article En | MEDLINE | ID: mdl-36144683

Starch is a biocompatible and economical biopolymer in which interest has been shown in obtaining electrospun fibers. This research reports that cassava (CEX) and pea (PEX) starches pretreated by means of reactive extrusion (REX) improved the starches rheological properties and the availability of amylose to obtain fibers. Solutions of CEX and PEX (30-36% w/v) in 38% v/v formic acid were prepared and the rheological properties and electrospinability were studied. The rheological values indicated that to obtain continuous fibers without beads, the entanglement concentration (Ce) must be 1.20 and 1.25 times the concentration of CEX and PEX, respectively. In CEX, a higher amylose content and lower viscosity were obtained than in PEX, which resulted in a greater range of concentrations (32-36% w/v) to obtain continuous fibers without beads with average diameters ranging from 316 ± 65 nm to 394 ± 102 nm. In PEX, continuous fibers without beads were obtained only at 34% w/v with an average diameter of 170 ± 49 nm. This study showed that starches (20-35% amylose) pretreated through REX exhibited electrospinning properties to obtain fibers, opening the opportunity to expand their use in food, environmental, biosensor, and biomedical applications, as vehicles for the administration of bioactive compounds.


Manihot , Amylose , Pisum sativum , Starch , Viscosity
4.
Nanotechnology ; 32(9): 095202, 2021 Feb 26.
Article En | MEDLINE | ID: mdl-33126229

Solution-processed photodetectors have emerged as the next generation of sensing technology owing to their ease of integration with electron devices and of tuning photodetector performance. Currently, novel self-powered photodetectors without an external power source, for use in sensing, imaging and communication, are in high demand. Herein, we successfully developed a self-powered photodetector based on a novel solution-processed p-NiO/n-CdS:Al heterojunction, which shows an excellent current rectification characteristic ratio of up to three orders in the dark and distinctive photovoltaic behavior under light illumination. The complete solution synthesis route followed the development of CdS:Al thin films on ITO substrates by chemical bath deposition and NiO thin films by the sol-gel route. Optical absorption data revealed that NiO is more active in the UV region and CdS:Al has a majority of absorption in the visible region; so, upon light illumination, the effective separation of photogenerated carriers produces fast photodetection in the UV-visible region. The photoresponsivity values of the fabricated device were calculated to be 55 mA W-1 and 30 mA W-1 for UV and visible illumination, respectively. Also, the device has a fast rise and decay photoresponse speed at zero bias voltage, due to the self-driven photovoltaic effect which makes this heterojunction a self-powered device. This complete solution and new method of fabrication make it possible to combine different materials and flexible substrates, enhancing its potential applications in photodetectors, optoelectronic devices and sensors.

5.
Nanotechnology ; 32(10): 105707, 2021 Mar 05.
Article En | MEDLINE | ID: mdl-33227723

The aim of this report is to synthesize copper oxide nanocubes (CuO NCs) at room temperature, using sodium borohydride as a reducing agent, and Cetyl Trimethyl Ammonium Bromide (CTAB) as a stabilizing agent. The crystallinity and morphology of the synthesized CuO NCs are investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The optical properties were analyzed by means of UV-visible absorbance and Raman spectroscopy. The existence of specific functional groups and structural stability were established via FTIR spectroscopy and thermogravimetric analysis (TGA). Furthermore, the catalytic efficiency of the as-prepared CuO NCs was tested using catalytic and photocatalytic studies of para-nitrophenol (p-NP) reduction and methylene blue (MB) degradation, respectively. The catalytic results demonstrated the nanocubes' excellent catalytic and photocatalytic responses with respect to the abatement of p-NP and MB within 50 s and 240 min, with kinetic rate constants of 3.9 × 10-2 s-1 and 6.47 × 10-3 min-1, respectively.

6.
ACS Omega ; 5(32): 20335-20342, 2020 Aug 18.
Article En | MEDLINE | ID: mdl-32832786

In this work, copper selenide (Cu3Se2 umangite phase) was synthesized by two routes, using a chemical reaction and the hydrothermal method to obtain CuSe-A and CuSe-H, respectively. The synthesis of Cu3Se2 consisted of a three-step process: in the first step, copper(I) oxide hexapods (Cu2O) were obtained as the copper reservoir; in the second step, selenium ions were obtained from the reduction of selenium powder; and in the third step involves mixing two precursors following the two synthesis routes mentioned before. Analysis of X-ray diffraction and X-ray photoelectron spectroscopy showed the formation of the Cu3Se2 phase by both synthesis routes. On the other hand, using the scanning electron microscopy (SEM) technique, it is observed that the Cu3Se2 sample (CuSe-A) is obtained by exchanging in solution with agitation and that the copper selenium phase grows only on the surface of the hexapods. Meanwhile, the hydrothermal route promotes a total conversion of copper(I) oxide hexapods to the copper selenide phase (CuSe-H). The resulting materials were tested as photocatalytic materials to remove methylene blue dye in water under sunlight irradiation. Cu3Se2 (CuSe-H) obtained by the hydrothermal route exhibited a higher efficiency of photodegradation of dye, reaching a removal percentage of 92% after 4 h under sunlight.

7.
Beilstein J Nanotechnol ; 11: 703-716, 2020.
Article En | MEDLINE | ID: mdl-32461872

In this work, a high-resolution atomic force acoustic microscopy imaging technique is developed in order to obtain the local indentation modulus at the nanoscale level. The technique uses a model that gives a qualitative relationship between a set of contact resonance frequencies and the indentation modulus. It is based on white-noise excitation of the tip-sample interaction and uses system theory for the extraction of the resonance modes. During conventional scanning, for each pixel, the tip-sample interaction is excited with a white-noise signal. Then, a fast Fourier transform is applied to the deflection signal that comes from the photodiodes of the atomic force microscopy (AFM) equipment. This approach allows for the measurement of several vibrational modes in a single step with high frequency resolution, with less computational cost and at a faster speed than other similar techniques. This technique is referred to as stochastic atomic force acoustic microscopy (S-AFAM), and the frequency shifts of the free resonance frequencies of an AFM cantilever are used to determine the mechanical properties of a material. S-AFAM is implemented and compared with a conventional technique (resonance tracking-atomic force acoustic microscopy, RT-AFAM). A sample of a graphite film on a glass substrate is analyzed. S-AFAM can be implemented in any AFM system due to its reduced instrumentation requirements compared to conventional techniques.

8.
Acta Chim Slov ; 67(1): 319-324, 2020 Mar.
Article En | MEDLINE | ID: mdl-33558934

Theoretical studies on conformational analysis, geometry optimizations and frequencies for citrate at the MP2/LANL2DZ level portrait it as a promising candidate for a complexing agent for cadmium (II) ion (Cd2+) and cadmium sulfide (CdS). Natural Bond Orbital (NBO) charges, Delocalization Indices, HOMO/LUMO gaps and surfaces along with absolute electronegativity values were employed to analyze the interactions among the configurations obtained. The most stable structures involved the interaction between the LUMO of Cd2+/CdS and the most dense region of the HOMO of the citrate ion.

9.
J Vis Exp ; (138)2018 08 30.
Article En | MEDLINE | ID: mdl-30222152

In this work, the effects on the preparation of bis(thiourea) cadmium chloride crystals when illuminated with ultraviolet (UV) light at a wavelength of 367 nm using the chemical bath deposition technique are studied comparatively. Two experiments are performed to make a comparison: one without UV light and the other with the aid of UV light. Both experiments are performed under equal conditions, at a temperature of 343 K and with a pH of 3.2. The precursors used are cadmium chloride (CdCl2) and thiourea [CS(NH2)2], which are dissolved in 50 mL of deionized water with an acidic pH. In this experiment, the interaction of electromagnetic radiation is sought at the moment the chemical reaction is carried out. The results demonstrate the existence of an interaction between the crystals and the UV light; the UV light assistance causes crystal growths in an acicular shape. Also, the final product obtained is cadmium sulfide and shows no evident difference when synthesized with or without the use of UV light.


Cadmium Chloride/chemistry , Cadmium Compounds/chemistry , Crystallization/methods , Sulfides/chemistry , Ultraviolet Rays
10.
ACS Omega ; 2(10): 6968-6974, 2017 Oct 31.
Article En | MEDLINE | ID: mdl-31457280

We report a simple sol-gel process for the deposition of poly(methyl methacrylate) (PMMA)-ZrO2 organic-inorganic hybrid films at low temperature and studied their properties as a function of the molar ratios of the precursors in the hybrid sol-gel solution, which included zirconium propoxide as the inorganic (zirconia) source, methyl methacrylate as the organic source, and 3-trimethoxy-silyl-propyl-methacrylate (TMSPM) as the coupling agent to enhance the compatibility between the organic and inorganic phases. The hybrid thin-film deposition was done on glass slide substrates by the dip-coating method. After deposition, the films were heat-treated at 100 °C for 24 h. The analysis of the hybrid films included Fourier transform infrared spectroscopy to identify their chemical groups and thermogravimetric analysis to determine the content of their organic and inorganic components. In addition, capacitance-voltage (C-V) and current-voltage (I-V) curves in metal-insulator-metal structures, using gold as metal contacts, were measured to find the dielectric constant and leakage current of the PMMA-ZrO2 hybrid films. Finally, because of their adequate dielectric characteristics, single hybrid layers were deposited on indium tin oxide-coated glass substrates and were tested as gate dielectric in thin-film transistors (TFTs), using sputtered ZnO layers as the semiconductor active channel. We measured the output electrical response and transfer characteristics of these hybrid dielectric gate-based devices and determined their main electrical parameters as a function of the TMSPM content in the hybrid dielectric gate layer. The better TFT electrical behavior presents field effect mobility of 0.48 cm2/V s, low threshold voltage of 3.3 V, and on/off current ratio of 105, and it was obtained by using PMMA-ZrO2 with 0.3 TMSPM content as the gate dielectric layer. The values obtained for the electrical parameters show that PMMA-ZrO2 hybrid films are quite suitable for dielectric gate applications in TFTs.

11.
Nanoscale Res Lett ; 7(1): 483, 2012 Aug 29.
Article En | MEDLINE | ID: mdl-22931255

This paper is dedicated to study the thin polycrystalline films of semiconductor chalcogenide materials (CdS, CdSe, and PbS) obtained by ammonia-free chemical bath deposition. The obtained material is of polycrystalline nature with crystallite of a size that, from a general point of view, should not result in any noticeable quantum confinement. Nevertheless, we were able to observe blueshift of the fundamental absorption edge and reduced refractive index in comparison with the corresponding bulk materials. Both effects are attributed to the material porosity which is a typical feature of chemical bath deposition technique. The blueshift is caused by quantum confinement in pores, whereas the refractive index variation is the evident result of the density reduction. Quantum mechanical description of the nanopores in semiconductor is given based on the application of even mirror boundary conditions for the solution of the Schrödinger equation; the results of calculations give a reasonable explanation of the experimental data.

...