Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(21): 5766-5773, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37881714

RESUMEN

Fluorescent core-shell silica nanoparticles are largely employed in nanomedicine and life science thanks to the many advantages they offer. Among these, the enhancement of the stability of the fluorescent signal upon fluorophore encapsulation into the silica matrix and the possibility to combine in a single vehicle multiple functionalities, physically separated in different compartments. In this work, we present a new approach to the Stöber method as a two-cycle protocol for the tailored synthesis of dual-color fluorescent core-shell silicon dioxide nanoparticles (SiO2 NPs) using two commercial dyes as model. To facilitate the colloidal stability, the nanoparticle surface was functionalized with biotin by two approaches. The biotinylated nanosystems were characterized by several analytical and advanced microscopy techniques including Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), UV-vis, transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Moreover, advanced super-resolution based on structured illumination was used for the imaging of the double-fluorescent NPs, both on a substrate and in the cellular microenvironment, at nanometric resolution 100 nm, in view of their versatile potential employment in fluorescence optical nanoscopy as nanoscale calibration tools as well as in biomedical applications as biocompatible nanosystems for intracellular biosensing with high flexibility of use, being these nanoplatforms adaptable to the encapsulation of any couple of dyes with the desired function.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014734

RESUMEN

Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation-condensation flow-levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...