Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2406235, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031008

RESUMEN

Hybrid ion capacitors (HICs) have aroused extreme interest due to their combined characteristics of energy and power densities. The performance of HICs lies hidden in the electrode materials used for the construction of battery and supercapacitor components. The hunt is always on to locate the best material in terms of cost-effectiveness and overall optimized performance characteristics. Functionalized biomass-derived porous carbons (FBPCs) possess exquisite features including easy synthesis, wide availability, high surface area, large pore volume, tunable pore size, surface functional groups, a wide range of morphologies, and high thermal and chemical stability. FBPCs have found immense use as cathode, anode and dual electrode materials for HICs in the recent literature. The current review is designed around two main concepts which include the synthesis and properties of FBPCs followed by their utilization in various types of HICs. Among monovalent HICs, lithium, sodium, and potassium, are given comprehensive attention, whereas zinc is the only multivalent HIC that is focused upon due to corresponding literature availability. Special attention is also provided to the critical factors that govern the performance of HICs. The review concludes by providing feasible directions for future research in various aspects of FBPCs and their utilization in HICs.

2.
Sci Technol Adv Mater ; 25(1): 2357062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835629

RESUMEN

Affordable and environmentally friendly electrochemically active raw energy storage materials are in high demand to switch to mass-scale renewable energy. One particularly promising avenue is the feasibility of utilizing food waste-derived nanoporous carbon. This material holds significance due to its widespread availability, affordability, ease of processing, and, notably, its cost-free nature. Over the years, various strategies have been developed to convert different food wastes into nanoporous carbon materials with enhanced electrochemical properties. The electrochemical performance of these materials is influenced by both intrinsic factors, such as the composition of elements derived from the original food sources and recipes, and extrinsic factors, including the conditions during pyrolysis and activation. While current efforts are dedicated to optimizing process parameters to achieve superior performance in electrochemical energy storage devices, it is timely to take stock of the current state of research in this emerging field. This review provides a comprehensive overview of recent developments in the fabrication and surface characterisation of porous carbons from different food wastes. A special focus is given on the applications of these food waste derived porous carbons for energy storage applications including batteries and supercapacitors.


This review compiles very recent literature on the synthesis of porous carbon from food waste biomass and their efficient utilisation as electrode material for energy storage applications in supercapacitor devices.

4.
Adv Mater ; 36(2): e2306895, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37699553

RESUMEN

Fast production of hydrogen and oxygen in large amounts at an economic rate is the need of the hour to cater to the needs of the most awaited hydrogen energy, a futuristic renewable energy solution. Production of hydrogen through simple water splitting via visible light photocatalytic approach using sunlight is considered as one of the most promising and sustainable approaches for generating clean fuels. For this purpose, a variety of catalytic techniques and novel catalysts have been investigated. Among these catalysts, carbon nitride is presently deemed as one of the best candidates for the visible light photocatalysis due to its unique molecular structure and adequate visible-range bandgap. Its bandgap can be further engineered by structural and morphological manipulation or by doping/hybridization. Among numerous synthetic approaches for carbon nitrides, supramolecular self-assembly is one of the recently developed elegant bottom-up strategies as it is bio-inspired and provides a facile and eco-friendly route to synthesize high surface area carbon nitride with superior morphological features and other semiconducting and catalytic properties. The current review article broadly covers supramolecular self-assembly synthesis of carbon nitride nanostructures and their photocatalytic water-splitting applications and provides a comprehensive outlook on future directions.

5.
Chem Soc Rev ; 52(21): 7602-7664, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37830178

RESUMEN

Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.

6.
Chemistry ; 29(69): e202302723, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37673789

RESUMEN

Designing unique nanomaterials for the selective sensing of biomolecules is of significant interest in the field of nanobiotechnology. In this work, we demonstrated the synthesis of ordered Cu nanoparticle-functionalised mesoporous C3 N5 that has unique peroxidase-like nanozymatic activity for the ultrasensitive and selective detection of glucose and glutathione. A nano hard-templating technique together with the in-situ polymerisation and self-assembly of Cu and high N-containing CN precursor was adopted to introduce mesoporosity as well as high N and Cu content in mesoporous C3 N5 . Due to the ordered structure and highly dispersed Cu in the mesoporous C3 N5 , a large enhancement of the peroxidase mimetic activity in the oxidation of a redox dye in the presence of hydrogen peroxide could be obtained. Additionally, the optimised Cu-functionalised mesoporous C3 N5 exhibited excellent sensitivity to glutathione with a low detection limit of 2.0 ppm. The strong peroxidase activity of the Cu-functionalised mesoporous C3 N5 was also effectively used for the sensing of glucose with a detection limit of 0.4 mM through glucose oxidation with glucose oxidase. This unique Cu-functionalised mesoporous C3 N5 has the potential for detecting various molecules in the environment as well as for next-generation glucose and glutathione diagnostic devices.


Asunto(s)
Cobre , Nanopartículas , Cobre/química , Glucosa/química , Nanopartículas/química , Peróxido de Hidrógeno/química , Peroxidasas , Glutatión , Colorimetría
7.
Small ; : e2303269, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386787

RESUMEN

In this work, the synthesis of core-shell ordered mesoporous silica nanoparticles (CSMS) with tunable particle size and shape through a dual surfactant-assisted approach is demonstrated. By varying the synthesis conditions, including the type of the solvent and the concentration of the surfactant, monodispersed and ordered mesoporous silica nanoparticles with tunable particle size (140-600 nm) and morphologies (hexagonal prism (HP), oblong, spherical, and hollow-core) can be realized. Comparative studies of the Cabazitaxel (CBZ)-loaded HP and spherical-shaped CSMS are conducted to evaluate their drug delivery efficiency to PC3 (prostate cancer) cell lines. These nanoparticles showed good biocompatibility and displayed a faster drug release at acidic pH than at basic pH. The cellular uptake of CSMS measured using confocal microscopy, flow cytometry, microplate reader, and ICP-MS (inductively coupled plasma mass spectrometry) techniques in PC3 cell lines revealed a better uptake of CSMS with HP morphology than its spherical counterparts. Cytotoxicity study showed that the anticancer activity of CBZ is improved with a higher free radical production when loaded onto CSMS. These unique materials with tunable morphology can serve as an excellent drug delivery system and will have potential applications for treating various cancers.

8.
Sci Technol Adv Mater ; 24(1): 2188879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007670

RESUMEN

Carbon nitrides, a distinguished class of metal-free catalytic materials, have presented a good potential for chemical transformations and are expected to become prominent materials for organocatalysis. This is largely possible due to their low cost, exceptional thermal and chemical stability, non-toxicity, ease of functionalization, porosity development, etc. Especially, the carbon nitrides with increased porosity and nitrogen contents are more versatile than their bulk counterparts for catalysis. These N-rich carbon nitrides are discussed in the earlier parts of the review. Later, the review highlights the role of such carbon nitride materials for the various organic catalytic reactions including Knoevenagel condensation, oxidation, hydrogenation, esterification, transesterification, cycloaddition, and hydrolysis. The recently emerging concepts in carbon nitride-based organocatalysis have been given special attention. In each of the sections, the structure-property relationship of the materials was discussed and related to their catalysis action. Relevant comparisons with other catalytic materials are also discussed to realize their real potential value. The perspective, challenges, and future directions are also discussed. The overall objective of this review is to provide up-to-date information on new developments in carbon nitride-based organic catalysis reactions that could see them rising as prominent catalytic materials in the future.

9.
Adv Sci (Weinh) ; 10(18): e2301045, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37096838

RESUMEN

Carbon-based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next-generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state-of-the-art overview of these advanced carbon-based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium-ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter-layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon-based electrodes in energy storage and conversion.


Asunto(s)
Suministros de Energía Eléctrica , Carbono/química , Electrodos , Transferencia de Energía , Nanotubos de Carbono/química , Puntos Cuánticos , Grafito/química , Conductividad Eléctrica , Litio/química , Técnicas Electroquímicas , Sodio/química , Catálisis
10.
J Control Release ; 343: 187-206, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090962

RESUMEN

One of the key focuses of the agricultural industry for preventing the decline in crop yields due to pests is to develop effective, safe, green, and sustainable pesticide formulation. A key objective of industry is to deliver active ingredients (AIs) that have minimal off site migration and non-target activity. Nanoporous materials have received significant attention internationally for the efficient loading and controlled, targeted delivery of pesticides. This is largely made possible due to their textural features including high surface area, large pore-volume, and tunable pore size. Additionally, the easier manipulation of their surface chemistry and stability in different environments are added advantages. The unique features of these materials allow them to address the solubility of the active ingredients, their efficient loading onto the porous channels, and slow and controlled delivery over time. One of their major advantages is the wide range of materials that could be suitably designed via different approaches to either adsorb, encapsulate, or entrap the active ingredient. This review is a timely presentation of recent progress made in nanoporous materials and discusses critical aspects of pesticide formulation and delivery.


Asunto(s)
Nanoporos , Plaguicidas , Agricultura , Porosidad , Solubilidad
11.
Environ Int ; 155: 106600, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33964642

RESUMEN

Aqueous film-forming foam, used in firefighting, and biowastes, including biosolids, animal and poultry manures, and composts, provide a major source of poly- and perfluoroalkyl substances (PFAS) input to soil. Large amounts of biowastes are added to soil as a source of nutrients and carbon. They also are added as soil amendments to improve soil health and crop productivity. Plant uptake of PFAS through soil application of biowastes is a pathway for animal and human exposure to PFAS. The complexity of PFAS mixtures, and their chemical and thermal stability, make remediation of PFAS in both solid and aqueous matrices challenging. Remediation of PFAS in biowastes, as well as soils treated with these biowastes, can be achieved through preventing and decreasing the concentration of PFAS in biowaste sources (i.e., prevention through source control), mobilization of PFAS in contaminated soil and subsequent removal through leaching (i.e., soil washing) and plant uptake (i.e., phytoremediation), sorption of PFAS, thereby decreasing their mobility and bioavailability (i.e., immobilization), and complete removal through thermal and chemical oxidation (i.e., destruction). In this review, the distribution, bioavailability, and remediation of PFAS in soil receiving solid biowastes, which include biosolids, composts, and manure, are presented.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Animales , Biodegradación Ambiental , Disponibilidad Biológica , Humanos , Suelo , Contaminantes del Suelo/análisis
12.
Environ Pollut ; 272: 115985, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190977

RESUMEN

Valorisation of food waste offers an economical and environmental opportunity, which can reduce the problems of its conventional disposal. Food waste is commonly disposed of in landfills or incinerated, causing many environmental, social, and economic issues. Large amounts of food waste are produced in the food supply chain of agriculture: production, post-harvest, distribution (transport), processing, and consumption. Food waste can be valorised into a range of products, including biofertilisers, bioplastics, biofuels, chemicals, and nutraceuticals. Conversion of food waste into these products can reduce the demand of fossil-derived products, which have historically contributed to large amounts of pollution. The variety of food chain suppliers offers a wide range of feedstocks that can be physically, chemically, or biologically altered to form an array of biofertilisers and soil amendments. Composting and anaerobic digestion are the main large-scale conversion methods used today to valorise food waste products to biofertilisers and soil amendments. However, emerging conversion methods such as dehydration, biochar production, and chemical hydrolysis have promising characteristics, which can be utilised in agriculture as well as for soil remediation. Valorising food waste into biofertilisers and soil amendments has great potential to combat land degradation in agricultural areas. Biofertilisers are rich in nutrients that can reduce the dependability of using conventional mineral fertilisers. Food waste products, unlike mineral fertilisers, can also be used as soil amendments to improve productivity. These characteristics of food wastes assist in the remediation of contaminated soils. This paper reviews the volume of food waste within the food chain and types of food waste feedstocks that can be valorised into various products, including the conversion methods. Unintended consequences of the utilisation of food waste as biofertilisers and soil-amendment products resulting from their relatively low concentrations of trace element nutrients and presence of potentially toxic elements are also evaluated.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Agricultura , Fertilizantes , Suelo
13.
Chem Asian J ; 15(12): 1863-1868, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32329239

RESUMEN

Molybdenum disulfide (MoS2 ) is a promising candidate as a high-performing anode material for sodium-ion batteries (SIBs) due to its large interlayer spacing. However, it suffers from continued capacity fading. This problem could be overcome by hybridizing MoS2 with nanostructured carbon-based materials, but it is quite challenging. Herein, we demonstrate a single-step strategy for the preparation of MoS2 coupled with ordered mesoporous carbon nitride using a nanotemplating approach which involves the pyrolysis of phosphomolybdic acid hydrate (PMA), dithiooxamide (DTO) and 5-amino-1H-tetrazole (5-ATTZ) together in the porous channels of 3D mesoporous silica template. The sulfidation to MoS2 , polymerization to carbon nitride (CN) and their hybridization occur simultaneously within a mesoporous silica template during a calcination process. The CN/MoS2 hybrid prepared by this unique approach is highly pure and exhibits good crystallinity as well as delivers excellent performance for SIBs with specific capacities of 605 and 431 mAhg-1 at current densities of 100 and 1000 mAg-1 , respectively, for SIBs.

14.
ACS Appl Mater Interfaces ; 12(10): 11922-11933, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32067462

RESUMEN

Nanoporous carbon (HNC) with a flake and nanotubular morphology and a high specific surface area is prepared by using natural halloysite nanotubes (HNTs), a low-cost and naturally available clay material with a mixture of flaky and tubular morphology. A controlled pore-filling technique is used to selectively control the porosity, morphology, and the specific surface area of the HNC. Activated nanoporous carbon (AHNC) with a high specific surface area is also prepared by using HNT together with the activation process with zinc chloride (ZnCl2). HNC exhibits flakes and tubular morphologies, which offer a high specific surface area (837 m2/g). The specific surface area of AHNC is 1646 m2/g, 74 times greater than the specific surface area of pure HNT (22.5 m2/g). These data revealed that the single-step activation combined with the nanotemplating results in creating a huge impact on the specific surface area of the HNC. Both HNC and AHNC are employed as adsorbents for CO2 adsorption at different pressures and adsorption temperatures. The CO2 adsorption capacity of AHNC is 25.7 mmol/g at 0 °C, which is found to be significantly higher than that of activated carbon (AC), mesoporous carbon (CMK-3), mesoporous carbon nitride (MCN-1), and multiwalled carbon nanotube (MWCNT). AHNC is also tested as an electroactive material and demonstrates good supercapacitance, cyclic stability, and high capacitance retention. Specific capacitance of AHNC in the aqueous electrolyte is 197 F/g at 0.3 A/g, which is higher than that of AC, MWCNT, and CMK-3. The technique adopted for the preparation of both HNC and AHNC is quite unique and simple, has the potential to replace the existing highly expensive and sophisticated mesoporous silica-based nanotemplating strategy, and could also be applied for the fabrication of series of advanced nanostructures with unique functionalities.

15.
Sci Rep ; 10(1): 909, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969608

RESUMEN

In this study, chitosan and alginate were selected to prepare alginate/chitosan nanoparticles to load the drug lovastatin by the ionic gelation method. The synthesized nanoparticles loaded with drug were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), laser scattering and differential scanning calorimetry (DSC) methods. The FTIR spectrum of the alginate/chitosan/lovastatin nanoparticles showed that chitosan and alginate interacted with lovastatin through hydrogen bonding and dipolar-dipolar interactions between the C-O, C=O, and OH groups in lovastatin, the C-O, NH, and OH groups in chitosan and the C-O, C=O, and OH groups in alginate. The laser scattering results and SEM images indicated that the alginate/chitosan/lovastatin nanoparticles have a spherical shape with a particle size in the range of 50-80 nm. The DSC diagrams displayed that the melting temperature of the alginate/chitosan/lovastatin nanoparticles was higher than that of chitosan and lower than that of alginate. This result means that the alginate and chitosan interact together, so that the nanoparticles have a larger crystal degree when compared with alginate and chitosan individually. Investigations of the in vitro lovastatin release from the alginate/chitosan/lovastatin nanoparticles under different conditions, including different alginate/chitosan ratios, different solution pH values and different lovastatin contents, were carried out by ultraviolet-visible spectroscopy. The rate of drug release from the nanoparticles is proportional to the increase in the solution pH and inversely proportional to the content of the loaded lovastatin. The drug release process is divided into two stages: a rapid stage over the first 10 hr, then the release becomes gradual and stable. The Korsmeyer-Peppas model is most suitable for the lovastatin release process from the alginate/chitosan/lovastatin nanoparticles in the first stage, and then the drug release complies with other models depending on solution pH in the slow release stage. In addition, the toxicity of alginate/chitosan/lovastatin (abbreviated ACL) nanoparticles was sufficiently low in mice in the acute toxicity test. The LD50 of the drug was higher than 5000 mg/kg, while in the subchronic toxicity test with treatments of 100 mg/kg and 300 mg/kg ACL nanoparticles, there were no abnormal signs, mortality, or toxicity in general to the function or structure of the crucial organs. The results show that the ACL nanoparticles are safe in mice and that these composite nanoparticles might be useful as a new drug carrier.


Asunto(s)
Alginatos , Quitosano , Portadores de Fármacos , Liberación de Fármacos , Lovastatina , Nanopartículas , Alginatos/química , Alginatos/toxicidad , Animales , Rastreo Diferencial de Calorimetría , Quitosano/química , Quitosano/toxicidad , Cristalización , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Lovastatina/química , Lovastatina/toxicidad , Ratones , Nanopartículas/toxicidad , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Toxicidad
16.
Sci Total Environ ; 699: 134303, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736201

RESUMEN

Knowledge about polar derivatives of polycyclic aromatic hydrocarbons (PAHs) in soils is limited despite the extensive study of the environmental presence and persistence of non-polar parent PAHs. Polar PAHs have greater potential to be more toxic at low environmental concentrations compared to their homocyclic analogues. For both polar and non-polar PAHs, combustion of fossil fuels is often the main source especially in industrialised environments. This study investigated the concentration profiles of PAHs and its associated polar PAHs such as nitrated PAHs (NPAHs), oxygenated PAHs (oxy-PAHs) and nitrogen, sulphur and oxygen heterocyclic PAHs (N/S/O-heterocyclic PAHs) in a well-known industrial heritage city of Australia. The most abundant polar PAHs were 9-fluorenone (oxy-PAHs), 2-nitrofluorene (NPAHs) and carbazole (heterocyclic-PAHs). A positive correlation (r = 0.5, p < 0.01) between ∑13PAHs and ∑19 polar PAHs was observed, implying a possible spatial association between parent and polar PAHs. The concentrations of polar PAHs in soil samples, across various landuse patterns, were used to calculate the excess lifetime cancer risk (ELCR) from incidental ingestion of soils. The computed ELCR values ranged from 8.2*10-7 (industrial soils) to 2.3*10-6 (residential soils), indicating negligible cancer risks. This is the first known study on the occurrence and concentrations of polar and non-polar PAHs in any Australian city, and the results may serve a baseline purpose for improved risk assessment of contaminated sites.

17.
J Nanosci Nanotechnol ; 20(6): 3519-3526, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748046

RESUMEN

Magnetite (Fe³O4) and Cobalt-doped Fe³O4 nanoparticles were obtained by hydrothermal reaction. The synthesized products were characterized by X-ray diffraction, Energy dispersive spectroscopy, Scanning electron microscopy, and Zeta potential. The results show that Co was substituted in the Fe³O4 crystal structure as CoFe2O4 phase. The synthesized materials are nanometer in size having uniform morphology, negatively charged and cobalt concentration varied from 2.5 to 7.5 wt.%. The magnetite and Co-doped magnetite nanoparticles at a low concentration (3 wt.%) were dispersed in the epoxy resin. The effect of the magnetite and Co-doped magnetite nanoparticles on the anticorrosion performance of the protective epoxy coatings covered on carbon steel surface was characterized by Electrochemical Impedance Spectroscopy (EIS) and salt fog exposure. Codoped magnetite nanoparticles at 2.5 wt.% provided high protection of the coatings. In addition, Pull-off tests confirmed an adhesion improvement of the epoxy coating filled by the Co-doped Fe³O4 nanoparticles.

18.
ACS Appl Mater Interfaces ; 11(30): 27192-27199, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31265243

RESUMEN

Mesoporous carbon nitride (MCN) with well-ordered porous structures is a promising anode material for secondary ion batteries owing to their unique physico- and electrochemical properties. However, the practical application of these MCNs in sodium-ion batteries (SIBs) is still limited because of their confined interlayer distance, which results in restricted accommodation of Na ions inside the lattice. Here, we report on the synthesis of highly ordered sulfur-doped MCN (S-MCN) through a hard template approach by employing dithiooxamide (DTO) as a single molecular precursor containing carbon, nitrogen, and sulfur elements. The interlayer distance of carbon nitride is significantly expanded upon the introduction of larger S ions on the MCN lattice, which enables high capability of Na ion accommodation. We also demonstrate through the first-principles density functional theory calculation that the present S-MCN is highly optimized not only for the chemical structure but also for uptaking abundant Na ions with high adsorption energy. The specific discharge capacity of SIBs appears to be remarkably enhanced for S-MCN (304.2 mA h g-1) compared to the nonporous S-CN (167.9 mA h g-1) and g-C3N4 (5.4 mA h g-1), highlighting the pivotal roles of the highly ordered mesoporous structure and S-doping in enhancing the electrochemical functionality of carbon nitride as an anode material for SIBs.

19.
J Nanosci Nanotechnol ; 19(12): 7892-7898, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31196305

RESUMEN

Here we report on the structural characterization and the hydrogen storage performance of naturally derived halloysite nanotubes (HNTs). HNTs were mined from different deposits in Australia and purified with different processes including crushing, blunging, reblunging, sedimentation and filtration. The clay materials were characterized by different techniques such as powder XRD, TGA, XPS, FTIR spectroscopy, SEM, TEM, and N2 sorption. Characterization results revealed that they are highly porous in nature with tubular morphology and exhibited excellent thermal stability. Among the halloysite materials studied, HNT1 which is having higher halloysite content and less kaolinite exhibited hydrogen uptake of 0.5 wt.% at 1 bar and -196 °C, which is increased to 1.33 wt.% when the pressure raised to 48 bar. High hydrogen uptake was linked with the high surface area, hollow tubular aluminosilicate structure and the large interlayer spacing of the HNTs as they favour physisorption of hydrogen. It was also demonstrated that HNT1 is considered to be better material than some of the materials reported so far in terms of their cost-effectiveness and environmental safety for the hydrogen storage.

20.
J Nanosci Nanotechnol ; 19(6): 3293-3300, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30744756

RESUMEN

Recently, drug delivery using natural and biodegradable nanoparticles has attracted huge attention. This study focused to deliver an anti-cancer and anti-inflammatory drug Ginsenoside Rb1 through chitosan-Alginate nanocomposite film prepared by solution method. Ginsenoside Rb1 is a dammaran saponin group, which is extracted from an herbaceous plant Panax notoginseng. Ginsenoside loaded alginate-chitosan nanocomposite films were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) methods. The FTIR spectra of alginate/chitosan/ginsenoside Rb1 nanocomposite films show that chitosan, alginate, and ginsenoside Rb1 are linked through the hydrogen bonding and dipolar-dipolar interactions. The FESEM image indicates that the chitosan and ginsenoside Rb1 dispersed well in the alginate matrix. The DSC diagrams display that melting temperature of alginate/chitosan/ginsenoside Rb1 nanocomposite films higher than that of chitosan and lower than that of alginate. It means that alginate and chitosan interact together. Investigation of the ginsenoside Rb1 release from alginate/chitosan/ginsenoside Rb1 nanocomposite films at different pH solutions and different ginsenoside Rb1 content has been carried out by ultraviolet-visible spectroscopy method. The rate of drug release is proportional to the increase in pH solution and inversely proportional to the content of loaded ginsenoside Rb1. The Rb1 release process includes two stages: burst release in the first 10 hours, then constant release afterwards. The suitable ratio of alginate/chitosan to prepare the alginate/chitosan/ginsenoside Rb1 nanocomposite films for further investigations was found out to be 8:2. Ginsenoside Rb1 release process from alginate/chitosan/ginsenoside Rb1 nanocomposite films was believed to be first-order kinetics in the first stage, and then the Rb1 release complies with Higuchi kinetic model in the slow release stage. This study demonstrated the novel synthesis methodology to design drug delivery system based on ginsenoside Rb1 loaded to chitosan/alginate nanocomposite films.


Asunto(s)
Quitosano , Ginsenósidos , Nanocompuestos , Alginatos , Sistemas de Liberación de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA