Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(1): 011005, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478451

RESUMEN

New particles in theories beyond the standard model can manifest as stable relics that interact strongly with visible matter and make up a small fraction of the total dark matter abundance. Such particles represent an interesting physics target since they can evade existing bounds from direct detection due to their rapid thermalization in high-density environments. In this work we point out that their annihilation to visible matter inside large-volume neutrino telescopes can provide a new way to constrain or discover such particles. The signal is the most pronounced for relic masses in the GeV range, and can be efficiently constrained by existing Super-Kamiokande searches for dinucleon annihilation. We also provide an explicit realization of this scenario in the form of secluded dark matter coupled to a dark photon, and we show that the present method implies novel and stringent bounds on the model that are complementary to direct constraints from beam dumps, colliders, and direct detection experiments.

2.
Phys Rev Lett ; 129(21): 211101, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461962

RESUMEN

We study the solar emission of light dark sector particles that self-interact strongly enough to self-thermalize. The resulting outflow behaves like a fluid which accelerates under its own thermal pressure to highly relativistic bulk velocities in the solar system. Compared to the ordinary noninteracting scenario, the local outflow has at least ∼10^{3} higher number density and correspondingly at least ∼10^{3} lower average energy per particle. We show how this generic phenomenon arises in a dark sector composed of millicharged particles strongly self-interacting via a dark photon. The millicharged plasma wind emerging in this model has novel yet predictive signatures that encourages new experimental directions. This phenomenon demonstrates how a small step away from the simplest models can lead to radically different outcomes and thus motivates a broader search for dark sector particles.

3.
Phys Rev Lett ; 129(26): 261801, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608202

RESUMEN

We propose using trapped electrons as high-Q resonators for detecting meV dark photon dark matter. When the rest energy of the dark photon matches the energy splitting of the two lowest cyclotron levels, the first excited state of the electron cyclotron will be resonantly excited. A proof-of-principle measurement, carried out with one electron, demonstrates that the method is background free over a 7.4 day search. It sets a limit on dark photon dark matter at 148 GHz (0.6 meV) that is around 75 times better than previous constraints. Dark photon dark matter in the 0.1-1 meV mass range (20-200 GHz) could likely be detected at a similar sensitivity in an apparatus designed for dark photon detection.

4.
Phys Rev Lett ; 124(18): 181802, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441984

RESUMEN

Weak-scale dark matter particles, in collisions with nuclei, can mediate transitions between different nuclear energy levels. In particular, owing to sizeable momentum exchange, dark matter particles can enable de-excitation of nuclear isomers that are extremely long lived with respect to regular radioactive decays. In this Letter, we utilize data from a past experiment with ^{180}Ta^{m} to search for γ lines that would accompany dark matter induced de-excitation of this isomer. Nonobservation of such transitions above background yields the first direct constraint on the lifetime of ^{180}Ta^{m} against dark matter initiated transitions: T_{1/2}>1.3×10^{14} a at 90% credibility. Using this result, we derive novel constraints on dark matter models with strongly interacting relics and on models with inelastic dark matter particles. Existing constraints are strengthened by this independent new method. The obtained limits are also valid for the standard model γ-decay of ^{180}Ta^{m}.

5.
Phys Rev Lett ; 122(4): 041802, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768321

RESUMEN

The commonly assumed cosmological history of our Universe is that at early times and high temperatures the Universe went through an electroweak phase transition (EWPT). Assuming an EWPT, and depending on its strength, there are many implications for baryogenesis, gravitational waves, and the evolution of the Universe in general. However, it is not true that all spontaneously broken symmetries at zero temperature are restored at high temperature. In particular the idea of "inverse symmetry breaking" has long been established in scalar theories with evidence from both perturbative and lattice calculations. In this Letter we demonstrate that with a simple extension of the standard model it is possible that the EW symmetry was always broken or only temporarily passed through a symmetry-restored phase. These novel phase histories have many cosmological and collider implications that we discuss. The model presented here serves as a useful benchmark comparison for future attempts to discern the phase of our Universe at T≳a few GeV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA