Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Lancet Microbe ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38878794

RESUMEN

BACKGROUND: AZD2816 is a variant-adapted COVID-19 vaccine that expresses the full-length SARS-CoV-2 beta variant spike protein but is otherwise similar to AZD1222 (ChAdOx1 nCoV-19). This study aimed to evaluate the safety and immunogenicity of AZD1222 or AZD2816 (or both) primary-series vaccination in a cohort of adult participants who were previously unvaccinated. METHODS: In this phase 2/3, randomised, multinational, active-controlled, non-inferiority, immunobridging study, adult participants previously unvaccinated for COVID-19 were enrolled at 16 study sites in Brazil, South Africa, Poland, and the UK. Participants were stratified by age, sex, and comorbidity and randomly assigned 5:5:5:2 to receive a primary series of AZD1222 (AZD1222 group), AZD2816 (AZD2816 [4-week] group), or AZD1222-AZD2816 (AZD1222-AZD2816 group) at 4-week dosing intervals, or AZD2816 at a 12-week interval (AZD2816 [12-week] group) and evaluated for safety and immunogenicity through 180 days after dose 2. Primary outcomes were safety (rates of solicited adverse events occurring during 7 days and unsolicited adverse events occurring during 28 days after each dose) and immunogenicity (non-inferiority of pseudovirus neutralising antibody geometric mean titre [GMT], GMT ratio margin of 0·67, and seroresponse rate, rate difference margin of -10%, recorded 28 days after dose 2 with AZD2816 [4-week interval] against beta vs AZD1222 against ancestral SARS-CoV-2) in participants who were seronegative at baseline. This trial is registered with ClinicalTrials.gov, NCT04973449, and is completed. FINDINGS: Between July 7 and Nov 12, 2021, 1449 participants were assigned to the AZD1222 group (n=413), the AZD2816 (4-week) group (n=415), the AZD1222-AZD2816 group (n=412), and the AZD2816 (12-week) group (n=209). Ten (2·6%) of 378 participants who were seronegative at baseline in the AZD1222 group, nine (2·4%) of 379 in the AZD2816 (4-week) group, eight (2·1%) of 380 in the AZD1222-AZD2816 group, and 11 (5·8%) of 191 in the AZD2816 (12-week) group had vaccine-related unsolicited adverse events. Serious adverse events were recorded in one (0·3%) participant in the AZD1222 group, one (0·3%) in the AZD2816 (4-week) group, two (0·5%) in the AZD1222-AZD2816 group, and none in the AZD2816 (12-week) group. Co-primary immunogenicity endpoints were met: neutralising antibody GMT (ratio 1·19 [95% CI 1·08-1·32]; lower bound greater than 0·67) and seroresponse rate (difference 1·7% [-3·1 to 6·5]; lower bound greater than -10%) at 28 days after dose 2 were non-inferior in the AZD2816 (4-week) group against beta versus in the AZD1222 group against ancestral SARS-CoV-2. Seroresponse rates were highest with AZD2816 against beta (12-week interval 94·3% [95% CI 89·4-97·3]; 4-week interval 85·7% [81·5-89·2]) and with AZD1222 (84·6% [80·3-88·2]) against ancestral SARS-CoV-2. INTERPRETATION: Primary series of AZD1222 and AZD2816 were well tolerated, with no emergent safety concerns. Both vaccines elicited robust immunogenicity against beta and ancestral SARS-CoV-2 with greater responses demonstrated when testing against SARS-CoV-2 strains that matched those targeted by the respective vaccine. These findings demonstrate the continued importance of ancestral COVID-19 vaccines in protecting against severe COVID-19 and highlight the feasibility of using the ChAdOx1 platform to develop COVID-19 vaccines against future SARS-CoV-2 variants. FUNDING: AstraZeneca.

3.
Vaccine ; 42(7): 1445-1453, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38036392

RESUMEN

The global public health nonprofit organization PATH hosted the third Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference in Washington, DC, from November 29 to December 1, 2022. This international gathering focused on cutting-edge research related to the development of vaccines against neglected diarrheal pathogens including Shigella, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and non-typhoidal Salmonella. In addition to the conference's plenary content, the agenda featured ten breakout workshops on topics of importance to the enteric vaccine field. This unique aspect of VASE Conferences allows focused groups of attendees to engage in in-depth discussions on subjects of interest to the enteric vaccine development community. In 2022, the workshops covered a range of topics. Two focused on the public health value of enteric vaccines, with one examining how to translate evidence into policy and the other on the value proposition of potential combination vaccines against bacterial enteric pathogens. Two more workshops explored new tools for the development and evaluation of vaccines, with the first on integrating antigen/antibody technologies for mucosal vaccine and immunoprophylactic development, and the second on adjuvants specifically for Shigella vaccines for children in low- and middle-income countries. Another pair of workshops covered the status of vaccines against two emerging enteric pathogens, Campylobacter and invasive non-typhoidal Salmonella. The remaining four workshops examined the assessment of vaccine impact on acute and long-term morbidity. These included discussions on the nature and severity of intestinal inflammation; cellular immunity and immunological memory in ETEC and Shigella infections; clinical and microbiologic endpoints for Shigella vaccine efficacy studies in children; and intricacies of protective immunity to enteric pathogens. This article provides a brief summary of the presentations and discussions at each workshop in order to share these sessions with the broader enteric vaccine field.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Oligopéptidos , Vacunas contra la Shigella , Shigella , Niño , Humanos , Diarrea/prevención & control , Salmonella
4.
BMJ Open ; 13(11): e072938, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963701

RESUMEN

INTRODUCTION: Invasive non-typhoidal Salmonellosis (iNTS) is mainly caused by Salmonella enterica serovars Typhimurium and Enteritidis and is estimated to result in 77 500 deaths per year, disproportionately affecting children under 5 years of age in sub-Saharan Africa. Invasive non-typhoidal Salmonellae serovars are increasingly acquiring resistance to first-line antibiotics, thus an effective vaccine would be a valuable tool in reducing morbidity and mortality from infection. While NTS livestock vaccines are in wide use, no licensed vaccines exist for use in humans. Here, a first-in-human study of a novel vaccine (iNTS-GMMA) containing S. Typhimurium and S. Enteritidis Generalised Modules for Membrane Antigens (GMMA) outer membrane vesicles is presented. METHOD AND ANALYSIS: The Salmonella Vaccine Study in Oxford is a randomised placebo-controlled participant-observer blind phase I study of the iNTS-GMMA vaccine. Healthy adult volunteers will be randomised to receive three intramuscular injections of the iNTS-GMMA vaccine, containing equal quantities of S. Typhimurium and S. Enteritidis GMMA particles adsorbed on Alhydrogel, or an Alhydrogel placebo at 0, 2 and 6 months. Participants will be sequentially enrolled into three groups: group 1, 1:1 randomisation to low dose iNTS-GMMA vaccine or placebo; group 2, 1:1 randomisation to full dose iNTS-GMMA vaccine or placebo; group 3, 2:1 randomisation to full dose or lower dose (dependant on DSMC reviews of groups 1 and 2) iNTS-GMMA vaccine or placebo.The primary objective is safety and tolerability of the vaccine. The secondary objective is immunogenicity as measured by O-antigen based ELISA. Further exploratory objectives will characterise the expanded human immune profile. ETHICS AND DISSEMINATION: Ethical approval for this study has been obtained from the South Central-Oxford A Research Ethics Committee (Ethics REF:22/SC/0059). Appropriate documentation and regulatory approvals have been acquired. Results will be disseminated via peer-reviewed articles and conferences. TRIAL REGISTRATION NUMBER: EudraCT Number: 2020-000510-14.


Asunto(s)
Infecciones por Salmonella , Vacunas contra la Salmonella , Adulto , Niño , Humanos , Preescolar , Vacunas contra la Salmonella/uso terapéutico , Hidróxido de Aluminio , Infecciones por Salmonella/prevención & control , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase I como Asunto
5.
Lancet Microbe ; 4(11): e863-e874, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37783221

RESUMEN

BACKGROUND: This study aimed to evaluate AZD2816, a variant-updated COVID-19 vaccine expressing the full-length SARS-CoV-2 beta (B.1.351) variant spike protein that is otherwise similar to AZD1222 (ChAdOx1 nCoV-19), and AZD1222 as third-dose boosters. METHODS: This phase 2/3, partly double-blinded, randomised, active-controlled study was done at 19 sites in the UK and four in Poland. Adult participants who had received a two-dose AZD1222 or mRNA vaccine primary series were randomly assigned by means of an Interactive Response Technology-Randomisation and Trial Supply Management system (1:1 within each primary-series cohort, stratified by age, sex, and comorbidities) to receive AZD1222 or AZD2816 (intramuscular injection; 5 × 1010 viral particles). Participants, investigators, and all sponsor staff members involved in study conduct were masked to randomisation. AZD1222 and AZD2816 doses were prepared by unmasked study staff members. The primary objectives were to evaluate safety and humoral immunogenicity (non-inferiority of day-29 pseudovirus neutralising antibody geometric mean titre [GMT] against ancestral SARS-CoV-2: AZD1222 booster vs AZD1222 primary series [historical controls]; margin 0·67; SARS-CoV-2-seronegative participants). This study is registered with ClinicalTrials.gov, NCT04973449, and is completed. FINDINGS: Between June 27 and Sept 30, 2021, 1394 participants of the 1741 screened were randomly assigned to AZD1222 or AZD2816 following an AZD1222 (n=373, n=377) or mRNA vaccine (n=322, n=322) primary series. In SARS-CoV-2-seronegative participants receiving AZD1222 or AZD2816, 78% and 80% (AZD1222 primary series) and 90% and 93%, respectively (mRNA vaccine primary series) reported solicited adverse events to the end of day 8; 2%, 2%, 1%, and 1% had serious adverse events and 12%, 12%, 10%, and 11% had adverse events of special interest, respectively, to the end of day 180. The primary immunogenicity non-inferiority endpoint was met: day-29 neutralising antibody GMT ratios (ancestral SARS-CoV-2) were 1·02 (95% CI 0·90-1·14) and 3·47 (3·09-3·89) with AZD1222 booster versus historical controls (AZD1222 and mRNA vaccine primary series, respectively). Responses against beta were greater with AZD2816 versus AZD1222 (GMT ratios, AZD1222, mRNA vaccine primary series 1·84 [1·63-2·08], 2·22 [1·99-2·47]). INTERPRETATION: Both boosters were well tolerated, with immunogenicity against ancestral SARS-CoV-2 similar to AZD1222 primary-series vaccination. AZD2816 gave greater immune responses against beta versus AZD1222. FUNDING: AstraZeneca.


Asunto(s)
COVID-19 , ChAdOx1 nCoV-19 , Adulto , Humanos , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2 , Polonia , COVID-19/prevención & control , Anticuerpos Neutralizantes , ARN Mensajero , Reino Unido
7.
BMJ Open ; 13(5): e068966, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225278

RESUMEN

INTRODUCTION: This is the first efficacy study of an oral live attenuated vaccine against Salmonella Paratyphi A using a human challenge model of paratyphoid infection. S. Paratyphi A is responsible for 3.3 million cases of enteric fever every year, with over 19 000 deaths. Although improvements to sanitation and access to clean water are vital to reduce the burden of this condition, vaccination offers a cost-effective, medium-term solution. Efficacy trials of potential S. Paratyphi vaccine candidates in the field are unlikely to be feasible given the large number of participants required. Human challenge models therefore offer a unique, cost-effective solution to test efficacy of such vaccines. METHODS AND ANALYSIS: This is an observer-blind, randomised, placebo-controlled trial phase I/II of the oral live-attenuated vaccine against S. Paratyphi A, CVD 1902. Volunteers will be randomised 1:1 to receive two doses of CVD 1902 or placebo, 14 days apart. One month following second vaccination all volunteers will ingest S. Paratyphi A bacteria with a bicarbonate buffer solution. They will be reviewed daily in the following 14 days and diagnosed with paratyphoid infection if the predefined microbiological or clinical diagnostic criteria are met. All participants will be treated with antibiotics on diagnosis, or at day 14 postchallenge if not diagnosed. The vaccine efficacy will be determined by comparing the relative attack rate, that is, the proportion of those diagnosed with paratyphoid infection, in the vaccine and placebo groups. ETHICS AND DISSEMINATION: Ethical approval for this study has been obtained from the Berkshire Medical Research Ethics Committee (REC ref 21/SC/0330). The results will be disseminated via publication in a peer-reviewed journal and presentation at international conferences. TRIAL REGISTRATION NUMBER: ISRCTN15485902.


Asunto(s)
Enfermedades Cardiovasculares , Salmonella paratyphi A , Humanos , Adulto , Vacunas Atenuadas , Voluntarios Sanos , Voluntarios , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase I como Asunto
8.
J Infect ; 86(6): 574-583, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028454

RESUMEN

BACKGROUND: Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS: Com-COV2 was a single-blinded trial in which adults ≥ 50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS: In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N = 540, 45% female) or BNT (N = 532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95% CI (confidence interval): 8.2, 11.5) at D28 to 6.2 (95% CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95% CI:2.5,3.5) to 2.4 (95% CI:1.9, 3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The adjusted GMR (aGMR) for BNT/Mod compared with BNT/BNT increased from 1.36 (95% CI: 1.17, 1.58) at D28 to 1.52 (95% CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95% CI: 0.47, 0.64) at day 28 and 0.62 (95% CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION: Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN: 27841311 EudraCT:2021-001275-16.


Asunto(s)
COVID-19 , Vacunas , Adulto , Femenino , Humanos , Masculino , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Vacuna BNT162 , Pandemias , Método Simple Ciego , COVID-19/prevención & control , Vacunación , Inmunidad , Inmunoglobulina G , Anticuerpos Antivirales
9.
Clin Exp Immunol ; 211(3): 280-287, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36729167

RESUMEN

The trajectory of immune responses following the primary dose series determines the decline in vaccine effectiveness over time. Here we report on maintenance of immune responses during the year following a two-dose schedule of ChAdOx1 nCoV-19/AZD1222, in the absence of infection, and also explore the decay of antibody after infection. Total spike-specific IgG antibody titres were lower with two low doses of ChAdOx1 nCoV-19 vaccines (two low doses) (P = 0.0006) than with 2 standard doses (the approved dose) or low dose followed by standard dose vaccines regimens. Longer intervals between first and second doses resulted in higher antibody titres (P < 0.0001); however, there was no evidence that the trajectory of antibody decay differed by interval or by vaccine dose, and the decay of IgG antibody titres followed a similar trajectory after a third dose of ChAdOx1 nCoV-19. Trends in post-infection samples were similar with an initial rapid decay in responses but good persistence of measurable responses thereafter. Extrapolation of antibody data, following two doses of ChAdOx1 nCov-19, demonstrates a slow rate of antibody decay with modelling, suggesting that antibody titres are well maintained for at least 2 years. These data suggest a persistent immune response after two doses of ChAdOx1 nCov-19 which will likely have a positive impact against serious disease and hospitalization.


Asunto(s)
ChAdOx1 nCoV-19 , Inmunoglobulina G , Humanos , Estudios de Seguimiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Inmunidad , Anticuerpos Antivirales , Vacunación
10.
Clin Infect Dis ; 76(2): 201-209, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36196614

RESUMEN

BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).


Asunto(s)
COVID-19 , Infecciones por VIH , Adulto , Humanos , VIH , ChAdOx1 nCoV-19 , Vacuna BNT162 , SARS-CoV-2 , COVID-19/prevención & control , Activación de Linfocitos , Vacunación , Infecciones por VIH/tratamiento farmacológico , Inmunoglobulina G , Anticuerpos Antivirales
11.
EBioMedicine ; 81: 104128, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35779491

RESUMEN

BACKGROUND: There are known differences in vaccine reactogenicity and immunogenicity by sex. Females have been shown to report greater reactogenicity and generate higher humoral and cellular immune responses than males following vaccination with several different vaccines. Whether this is also the case for COVID-19 vaccines is currently unknown, as COVID-19 vaccine study data disaggregated by sex are not routinely reported. Therefore, we have assessed the influence of sex on reactogenicity, immunogenicity and efficacy of COVID-19 vaccine ChAdOx1 nCoV-19. METHODS: Vaccine efficacy was assessed in 15169 volunteers enrolled into single-blind randomised controlled trials of ChAdOx1 nCoV-19 in Brazil and the UK, with the primary endpoint defined as nucleic acid amplification test (NAAT)-positive symptomatic SARS-CoV-2 infection. All participants were electronically randomised to receive two standard doses of vaccine or the control product. Logistic regression models were fitted to explore the effect of age and sex on reactogenicity, and linear models fitted to log-transformed values for immunogenicity data. Reactogenicity data were taken from self-reported diaries of 788 trial participants. Pseudovirus neutralisation assay data were available from 748 participants and anti-SARS-CoV-2 spike IgG assay data from 1543 participants. FINDINGS: 7619 participants received ChAdOx1 nCoV-19 and 7550 received the control. Vaccine efficacy in participants after two doses of ChAdOx1 nCoV-19 (4243 females and 3376 males) was 66.1% (95% CI 55.9-73.9%) in males and 59.9% (95% CI 49.8-67.9%) in females; with no evidence of a difference in efficacy between the sexes (vaccine by sex interaction term P=0.3359). A small, statistically significant difference in anti-spike IgG was observed (adjusted GMR 1.14; 95% CI 1.04-1.26), with higher titres in females than males, but there were no statistically significant differences in other immunological endpoints. Whilst the majority of individuals reported at least one systemic reaction following a first dose of ChAdOx1 nCoV-19, females were twice as likely as males to report any systemic reaction after a first dose (OR 1.95; 95% CI 1.37-2.77). Measured fever of 38°C or above was reported in 5% of females and 1% of males following first doses. Headache and fatigue were the most commonly reported reactions in both sexes. INTERPRETATION: Our results show that there is no evidence of difference in efficacy of the COVID-19 vaccine ChAdOx1 nCoV-19 in males and females. Greater reactogenicity in females was not associated with any difference in vaccine efficacy. FUNDING: Studies were registered with ISRCTN 90906759 (COV002) and ISRCTN 89951424 (COV003) and follow-up is ongoing. Funding was received from the UK Research and Innovation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research Oxford Biomedical Research Centre, Chinese Academy of Medical Sciences Innovation Fund for Medical Science, Thames Valley and South Midlands NIHR Clinical Research Network, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil, and AstraZeneca.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Femenino , Humanos , Inmunoglobulina G , Masculino , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Método Simple Ciego
12.
Lancet Respir Med ; 10(11): 1049-1060, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690076

RESUMEN

BACKGROUND: Priming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca). METHODS: Com-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020-005085-33). FINDINGS: Between Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77-89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2-ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1-1·8) for homologous BNT162b2, 1·5 (1·2-1·9) for ChAdOx1 nCoV-19-BNT162b2, 1·6 (1·3-2·1) for BNT162b2-ChAdOx1 nCoV-19, and 2·4 (1·7-3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17-0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19-BNT162b2 were up to 80% less reactogenic than 4-week schedules. INTERPRETATION: These data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals. FUNDING: UK Vaccine Taskforce and National Institute for Health and Care Research.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Vacuna BNT162 , COVID-19/prevención & control , Inmunización Secundaria , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoglobulina G
13.
J Clin Microbiol ; 60(4): e0228321, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35321556

RESUMEN

Tools to detect SARS-CoV-2 variants of concern and track the ongoing evolution of the virus are necessary to support public health efforts and the design and evaluation of novel COVID-19 therapeutics and vaccines. Although next-generation sequencing (NGS) has been adopted as the gold standard method for discriminating SARS-CoV-2 lineages, alternative methods may be required when processing samples with low viral loads or low RNA quality. To this aim, an allele-specific probe PCR (ASP-PCR) targeting lineage-specific single nucleotide polymorphisms (SNPs) was developed and used to screen 1,082 samples from two clinical trials in the United Kingdom and Brazil. Probit regression models were developed to compare ASP-PCR performance against 1,771 NGS results for the same cohorts. Individual SNPs were shown to readily identify specific variants of concern. ASP-PCR was shown to discriminate SARS-CoV-2 lineages with a higher likelihood than NGS over a wide range of viral loads. The comparative advantage for ASP-PCR over NGS was most pronounced in samples with cycle threshold (CT) values between 26 and 30 and in samples that showed evidence of degradation. Results for samples screened by ASP-PCR and NGS showed 99% concordant results. ASP-PCR is well suited to augment but not replace NGS. The method can differentiate SARS-CoV-2 lineages with high accuracy and would be best deployed to screen samples with lower viral loads or that may suffer from degradation. Future work should investigate further destabilization from primer-target base mismatch through altered oligonucleotide chemistry or chemical additives.


Asunto(s)
COVID-19 , SARS-CoV-2 , Alelos , COVID-19/diagnóstico , Humanos , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética
14.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35192543

RESUMEN

Duration of protection from SARS-CoV-2 infection in people living with HIV (PWH) following vaccination is unclear. In a substudy of the phase II/III the COV002 trial (NCT04400838), 54 HIV+ male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells > 350 cells/µL) received 2 doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and Meso Scale Discovery [MSD]), neutralization, ACE-2 inhibition, IFN-γ ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that, 6 months after vaccination, the majority of measurable immune responses were greater than prevaccination baseline but with evidence of a decline in both humoral and cell-mediated immunity. There was, however, no significant difference compared with a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although they were lower than WT. Preexisting cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater postvaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the ongoing policy to vaccinate PWH against SARS-CoV-2, and they underpin the need for long-term monitoring of responses after vaccination.


Asunto(s)
COVID-19 , Infecciones por VIH , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , SARS-CoV-2 , Vacunación
15.
Lancet ; 399(10319): 36-49, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883053

RESUMEN

BACKGROUND: Given the importance of flexible use of different COVID-19 vaccines within the same schedule to facilitate rapid deployment, we studied mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer-BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax). METHODS: Com-COV2 is a single-blind, randomised, non-inferiority trial in which adults aged 50 years and older, previously immunised with a single dose of ChAd or BNT in the community, were randomly assigned (in random blocks of three and six) within these cohorts in a 1:1:1 ratio to receive a second dose intramuscularly (8-12 weeks after the first dose) with the homologous vaccine, m1273, or NVX. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentrations measured by ELISA in heterologous versus homologous schedules at 28 days after the second dose, with a non-inferiority criterion of the GMR above 0·63 for the one-sided 98·75% CI. The primary analysis was on the per-protocol population, who were seronegative at baseline. Safety analyses were done for all participants who received a dose of study vaccine. The trial is registered with ISRCTN, number 27841311. FINDINGS: Between April 19 and May 14, 2021, 1072 participants were enrolled at a median of 9·4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female). In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20 114 ELISA laboratory units [ELU]/mL [95% CI 18 160 to 22 279]) and ChAd/NVX (5597 ELU/mL [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/mL [1718 to 2262]) with a GMR of 10·2 (one-sided 98·75% CI 8·4 to ∞) for ChAd/m1273 and 2·8 (2·2 to ∞) for ChAd/NVX, compared with ChAd/ChAd. In BNT-primed participants, non-inferiority was shown for BNT/m1273 (GMC 22 978 ELU/mL [95% CI 20 597 to 25 636]) but not for BNT/NVX (8874 ELU/mL [7391 to 10 654]), compared with BNT/BNT (16 929 ELU/mL [15 025 to 19 075]) with a GMR of 1·3 (one-sided 98·75% CI 1·1 to ∞) for BNT/m1273 and 0·5 (0·4 to ∞) for BNT/NVX, compared with BNT/BNT; however, NVX still induced an 18-fold rise in GMC 28 days after vaccination. There were 15 serious adverse events, none considered related to immunisation. INTERPRETATION: Heterologous second dosing with m1273, but not NVX, increased transient systemic reactogenicity compared with homologous schedules. Multiple vaccines are appropriate to complete primary immunisation following priming with BNT or ChAd, facilitating rapid vaccine deployment globally and supporting recognition of such schedules for vaccine certification. FUNDING: UK Vaccine Task Force, Coalition for Epidemic Preparedness Innovations (CEPI), and National Institute for Health Research. NVX vaccine was supplied for use in the trial by Novavax.


Asunto(s)
Adyuvantes de Vacunas/administración & dosificación , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Inmunización Secundaria/efectos adversos , Inmunización Secundaria/métodos , Inmunogenicidad Vacunal , Vacunas de ARNm/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Anciano , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , ChAdOx1 nCoV-19/administración & dosificación , ChAdOx1 nCoV-19/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Método Simple Ciego , Reino Unido , Vacunación/efectos adversos , Vacunación/métodos , Vacunas de ARNm/inmunología
16.
JAMA Netw Open ; 4(10): e2128652, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34636914

RESUMEN

Importance: There is a need for improved immunogenicity of hepatitis B virus (HBV) vaccines among young adults with risk of infection. Objectives: To demonstrate manufacturing equivalence of a 3-antigen (3A) HBV vaccine, evaluate noninferiority of seroprotection rate (SPR) of 3A-HBV vs single-antigen (1A) HBV after 2 and 3 vaccine doses, and compare safety and reactogenicity between 3A-HBV and 1A-HBV vaccines. Design, Setting, and Participants: This phase 3, double-blinded, randomized clinical trial included healthy adults aged 18 to 45 years randomized to 1 of three 3A-HBV groups or 1 control group receiving 1A-HBV. The trial was conducted at 37 community clinics and academic hospitals in Canada, Europe, the United Kingdom, and the United States between December 2017 and October 2019. Participants were followed up for 48 weeks after the first vaccination. Interventions: Intramuscular administration of 3A-HBV (10 µg) or 1A-HBV (20 µg) on days 0, 28, and 168. Main Outcomes and Measures: Geometric mean concentration (GMC) of serum hepatitis B surface antibodies (anti-HBs) and proportion of participants achieving seroprotection. Results: Of 2838 participants, 1638 (57.8%) were women, 2595 (91.5%) were White, and 161 (5.7%) were Black or African American. A total of 712 participants (25.1%) were randomized to the 1A-HBV group and 2126 (74.9%) to 3A-HBV. The mean (SD) age at informed consent was 33.5 (8.0) years. The study demonstrated 3A-HBV lot-to-lot consistency, as the 2-sided 95% CIs for each pairwise comparison for the anti-HBs GMC ratios were within 0.67 and 1.50 (eg, adjusted GMC ratio, lot A vs lot B: 0.82; 95% CI, 0.67-1.00; lot A vs lot C: 0.95; 95% CI, 0.78-1.15; lot B vs lot C: 1.16; 95% CI, 0.95-1.41). The SPR of the pooled 3A-HBV was noninferior to 1A-HBV and higher than 1A-HBV after 2 vaccinations at day 168 (90.4% [95% CI, 89.0%-91.8%] vs 51.6% [95% CI, 47.5%-55.6%]) and 3 vaccinations at day 196 (99.3% [95% CI, 98.7%-99.6%] vs 94.8% [95% CI, 92.7%-96.4%]). The mean GMC of anti-HBs with 3A-HBV was 7.9 times higher after 2 vaccinations at day 168 and 3.5 times higher after 3 vaccinations at day 196 compared with 1A-HBV (after 2 vaccinations, 3A-HBV: GMC, 118.7 mIU/mL; 95% CI, 108.0-129.0 mIU/mL; SE, 1.0 mIU/mL; 1A-HBV: GMC, 15.0 mIU/mL; 95% CI, 12.9-17.5 mIU/mL; SE, 1.0 mIU/mL; after 3 vaccinations, 3A-HBV: GMC, 5442.4 mIU/mL; 95% CI, 4967.0-5963.0 mIU/mL; SE, 1.0 mIU/mL; 1A-HBV: 1567.2 mIU/mL; 95% CI, 1338.0-1834.0 mIU/mL; SE, 1.0 mIU/mL). Rates of local and systemic reactogenicities were higher with 3A-HBV compared with 1A-HBV (local: 1805 of 2124 [85.0%] vs 469 of 712 [65.9%]; systemic: 1445 [68.0%] vs 428 [60.1%]). Vaccine discontinuation due to adverse events (AE) was uncommon, and serious AEs were infrequent, reported in 42 participants (2.0%) and 3 participants (0.4%) in the 3A-HBV and 1A-HBV groups, respectively. Conclusions and Relevance: In this study, consistently higher antibody concentrations and SPRs were found with 3A-HBV after 2 and 3 doses vs 1A-HBV in adults aged 18 to 45 years old. The safety and efficacy of 3A-HBV shows its usefulness for the prevention of hepatitis B in young healthy adults. Trial Registration: Clinicaltrials.gov Identifier: NCT03408730; EU Clinical Trials Number: 2017-001820-22.


Asunto(s)
Anticuerpos contra la Hepatitis B/efectos de los fármacos , Vacunas contra Hepatitis B/normas , Inmunogenicidad Vacunal/efectos de los fármacos , Adolescente , Adulto , Método Doble Ciego , Femenino , Antígenos de Superficie de la Hepatitis B/efectos adversos , Antígenos de Superficie de la Hepatitis B/farmacología , Antígenos de Superficie de la Hepatitis B/uso terapéutico , Vacunas contra Hepatitis B/inmunología , Vacunas contra Hepatitis B/farmacología , Humanos , Inmunogenicidad Vacunal/inmunología , Masculino , Persona de Mediana Edad
17.
Nat Commun ; 12(1): 5861, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615860

RESUMEN

Several COVID-19 vaccines have shown good efficacy in clinical trials, but there remains uncertainty about the efficacy of vaccines against different variants. Here, we investigate the efficacy of ChAdOx1 nCoV-19 (AZD1222) against symptomatic COVID-19 in a post-hoc exploratory analysis of a Phase 3 randomised trial in Brazil (trial registration ISRCTN89951424). Nose and throat swabs were tested by PCR in symptomatic participants. Sequencing and genotyping of swabs were performed to determine the lineages of SARS-CoV-2 circulating during the study. Protection against any symptomatic COVID-19 caused by the Zeta (P.2) variant was assessed in 153 cases with vaccine efficacy (VE) of 69% (95% CI 55, 78). 49 cases of B.1.1.28 occurred and VE was 73% (46, 86). The Gamma (P.1) variant arose later in the trial and fewer cases (N = 18) were available for analysis. VE was 64% (-2, 87). ChAdOx1 nCoV-19 provided 95% protection (95% CI 61%, 99%) against hospitalisation due to COVID-19. In summary, we report that ChAdOx1 nCoV-19 protects against emerging variants in Brazil despite the presence of the spike protein mutation E484K.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Filogenia , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Brasil , ChAdOx1 nCoV-19 , Estudios de Cohortes , Relación Dosis-Respuesta Inmunológica , Femenino , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Vacunación , Carga Viral/inmunología , Adulto Joven
18.
Lancet ; 398(10304): 981-990, 2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34480858

RESUMEN

BACKGROUND: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between the first and second dose becomes longer. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose of ChAdOx1 nCoV-19 (AZD1222), immunity after an extended interval (44-45 weeks) between the first and second dose, and response to a third dose as a booster given 28-38 weeks after the second dose. METHODS: In this substudy, volunteers aged 18-55 years who were enrolled in the phase 1/2 (COV001) controlled trial in the UK and had received either a single dose or two doses of 5 × 1010 viral particles were invited back for vaccination. Here we report the reactogenicity and immunogenicity of a delayed second dose (44-45 weeks after first dose) or a third dose of the vaccine (28-38 weeks after second dose). Data from volunteers aged 18-55 years who were enrolled in either the phase 1/2 (COV001) or phase 2/3 (COV002), single-blinded, randomised controlled trials of ChAdOx1 nCoV-19 and who had previously received a single dose or two doses of 5 × 1010 viral particles are used for comparison purposes. COV001 is registered with ClinicalTrials.gov, NCT04324606, and ISRCTN, 15281137, and COV002 is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137, and both are continuing but not recruiting. FINDINGS: Between March 11 and 21, 2021, 90 participants were enrolled in the third-dose boost substudy, of whom 80 (89%) were assessable for reactogenicity, 75 (83%) were assessable for evaluation of antibodies, and 15 (17%) were assessable for T-cells responses. The two-dose cohort comprised 321 participants who had reactogenicity data (with prime-boost interval of 8-12 weeks: 267 [83%] of 321; 15-25 weeks: 24 [7%]; or 44-45 weeks: 30 [9%]) and 261 who had immunogenicity data (interval of 8-12 weeks: 115 [44%] of 261; 15-25 weeks: 116 [44%]; and 44-45 weeks: 30 [11%]). 480 participants from the single-dose cohort were assessable for immunogenicity up to 44-45 weeks after vaccination. Antibody titres after a single dose measured approximately 320 days after vaccination remained higher than the titres measured at baseline (geometric mean titre of 66·00 ELISA units [EUs; 95% CI 47·83-91·08] vs 1·75 EUs [1·60-1·93]). 32 participants received a late second dose of vaccine 44-45 weeks after the first dose, of whom 30 were included in immunogenicity and reactogenicity analyses. Antibody titres were higher 28 days after vaccination in those with a longer interval between first and second dose than for those with a short interval (median total IgG titre: 923 EUs [IQR 525-1764] with an 8-12 week interval; 1860 EUs [917-4934] with a 15-25 week interval; and 3738 EUs [1824-6625] with a 44-45 week interval). Among participants who received a third dose of vaccine, antibody titres (measured in 73 [81%] participants for whom samples were available) were significantly higher 28 days after a third dose (median total IgG titre: 3746 EUs [IQR 2047-6420]) than 28 days after a second dose (median 1792 EUs [IQR 899-4634]; Wilcoxon signed rank test p=0·0043). T-cell responses were also boosted after a third dose (median response increased from 200 spot forming units [SFUs] per million peripheral blood mononuclear cells [PBMCs; IQR 127-389] immediately before the third dose to 399 SFUs per milion PBMCs [314-662] by day 28 after the third dose; Wilcoxon signed rank test p=0·012). Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose. INTERPRETATION: An extended interval before the second dose of ChAdOx1 nCoV-19 leads to increased antibody titres. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlates with high efficacy after second dose and boosts T-cell responses. FUNDING: UK Research and Innovation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research Oxford Biomedical Research Centre, Chinese Academy of Medical Sciences Innovation Fund for Medical Science, Thames Valley and South Midlands NIHR Clinical Research Network, AstraZeneca, and Wellcome.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , Inmunogenicidad Vacunal/inmunología , Ensayos Clínicos Controlados Aleatorios como Asunto , Vacunación , Adulto , ChAdOx1 nCoV-19 , Femenino , Humanos , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Factores de Tiempo , Reino Unido
19.
Lancet ; 398(10303): 856-869, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34370971

RESUMEN

BACKGROUND: Use of heterologous prime-boost COVID-19 vaccine schedules could facilitate mass COVID-19 immunisation. However, we have previously reported that heterologous schedules incorporating an adenoviral vectored vaccine (ChAdOx1 nCoV-19, AstraZeneca; hereafter referred to as ChAd) and an mRNA vaccine (BNT162b2, Pfizer-BioNTech; hereafter referred to as BNT) at a 4-week interval are more reactogenic than homologous schedules. Here, we report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines. METHODS: Com-COV is a participant-blinded, randomised, non-inferiority trial evaluating vaccine safety, reactogenicity, and immunogenicity. Adults aged 50 years and older with no or well controlled comorbidities and no previous SARS-CoV-2 infection by laboratory confirmation were eligible and were recruited at eight sites across the UK. The majority of eligible participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), who were randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals. A small subset of eligible participants (n=100) were enrolled into an immunology cohort, who had additional blood tests to evaluate immune responses; these participants were randomly assigned (1:1:1:1) to the four schedules (28-day interval only). Participants were masked to the vaccine received but not to the prime-boost interval. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration (measured by ELISA) at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT. The heterologous schedules were considered non-inferior to the approved homologous schedules if the lower limit of the one-sided 97·5% CI of the GMR of these comparisons was greater than 0·63. The primary analysis was done in the per-protocol population, who were seronegative at baseline. Safety analyses were done among participants receiving at least one dose of a study vaccine. The trial is registered with ISRCTN, 69254139. FINDINGS: Between Feb 11 and Feb 26, 2021, 830 participants were enrolled and randomised, including 463 participants with a 28-day prime-boost interval, for whom results are reported here. The mean age of participants was 57·8 years (SD 4·7), with 212 (46%) female participants and 117 (25%) from ethnic minorities. At day 28 post boost, the geometric mean concentration of SARS-CoV-2 anti-spike IgG in ChAd/BNT recipients (12 906 ELU/mL) was non-inferior to that in ChAd/ChAd recipients (1392 ELU/mL), with a GMR of 9·2 (one-sided 97·5% CI 7·5 to ∞). In participants primed with BNT, we did not show non-inferiority of the heterologous schedule (BNT/ChAd, 7133 ELU/mL) against the homologous schedule (BNT/BNT, 14 080 ELU/mL), with a GMR of 0·51 (one-sided 97·5% CI 0·43 to ∞). Four serious adverse events occurred across all groups, none of which were considered to be related to immunisation. INTERPRETATION: Despite the BNT/ChAd regimen not meeting non-inferiority criteria, the SARS-CoV-2 anti-spike IgG concentrations of both heterologous schedules were higher than that of a licensed vaccine schedule (ChAd/ChAd) with proven efficacy against COVID-19 disease and hospitalisation. Along with the higher immunogenicity of ChAd/BNT compared with ChAD/ChAd, these data support flexibility in the use of heterologous prime-boost vaccination using ChAd and BNT COVID-19 vaccines. FUNDING: UK Vaccine Task Force and National Institute for Health Research.


Asunto(s)
Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , Anciano , Anticuerpos Antivirales/sangre , Vacuna BNT162 , Vacunas contra la COVID-19/administración & dosificación , ChAdOx1 nCoV-19 , Estudios de Equivalencia como Asunto , Femenino , Humanos , Esquemas de Inmunización , Inmunoglobulina G/sangre , Análisis de Intención de Tratar , Masculino , Persona de Mediana Edad , Método Simple Ciego , Glicoproteína de la Espiga del Coronavirus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...