Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Transl Med ; 14(644): eabg8397, 2022 05 11.
Article En | MEDLINE | ID: mdl-35544594

Despite the hyperproliferative environment marked by activation of ß-catenin and overexpression of c-myc, the epidermis surrounding chronic diabetic foot ulcers (DFUs) is clinically hypertrophic and nonmigratory yet does not undergo malignant transformation. We identified miR193b-3p as a master regulator that contributes to this unique cellular phenotype. We determined that induction of tumor suppressor miR193b-3p is a unique feature of DFUs that is not found in venous leg ulcers, acute wounds, or cutaneous squamous cell carcinoma (SCC). Genomic analyses of DFUs identified suppression of the miR193b-3p target gene network that orchestrates cell motility. Inhibition of migration and wound closure was further confirmed by overexpression of miR193b-3p in human organotypic and murine in vivo wound models, whereas miR193b-3p knockdown accelerated wound reepithelialization in human ex vivo and diabetic murine wounds in vivo. The dominant negative effect of miR193b-3p on keratinocyte migration was maintained in the presence of promigratory miR31-5p and miR15b-5p, which were also overexpressed in DFUs. miR193b-3p mediated antimigratory activity by disrupting stress fiber formation and by decreasing activity of GTPase RhoA. Conversely, miR193b-3p targets that typically participate in malignant transformation were found to be differentially regulated between DFUs and SCC, including the proto-oncogenes KRAS (Kirsten rat sarcoma viral proto-oncogene) and KIT (KIT proto-oncogene). Although miR193b-3p acts as a tumor suppressor contributing to low tumor incidence in DFUs, it also acts as a master inhibitor of cellular migration and epithelialization in DFUs. Thus, miR193b-3p may represent a target for wound healing induction, cancer therapeutics, and diagnostics.


Carcinoma, Squamous Cell , Diabetes Mellitus , Diabetic Foot , Skin Neoplasms , Animals , Cell Movement/genetics , Diabetic Foot/genetics , Diabetic Foot/pathology , Mice , Wound Healing
2.
J Invest Dermatol ; 138(5): 1187-1196, 2018 05.
Article En | MEDLINE | ID: mdl-29273315

Diabetic foot ulcers (DFUs) are a debilitating complication of diabetes in which bacterial presence, including the frequent colonizer Staphylococcus aureus, contributes to inhibition of healing. MicroRNAs (miRs) play a role in healing and host response to bacterial pathogens. However, the mechanisms by which miR response to cutaneous S. aureus contributes to DFU pathophysiology are unknown. Here, we show that S. aureus inhibits wound closure and induces miR-15b-5p in acute human and porcine wound models and in chronic DFUs. Transcriptome analyses of DFU tissue showed induction of miR-15b-5p to be critical, regulating many cellular processes, including DNA repair and inflammatory response, by suppressing downstream targets IKBKB, WEE1, FGF2, RAD50, MSH2, and KIT. Using a human wound model, we confirmed that S. aureus-triggered miR-15b-5p induction results in suppression of the inflammatory- and DNA repair-related genes IKBKB and WEE1. Inhibition of DNA repair and accumulation of DNA breaks was functionally confirmed by the presence of the pH2AX within colonized DFUs. We conclude that S. aureus induces miR-15b-5p, subsequently repressing DNA repair and inflammatory response, showing a mechanism of inhibition of healing in DFUs previously unreported, to our knowledge. This underscores a previously unknown role of DNA damage repair in the pathophysiology of DFUs colonized with S. aureus.


DNA Repair , Diabetic Foot/microbiology , Inflammation/etiology , MicroRNAs/physiology , Staphylococcus aureus/pathogenicity , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Humans , I-kappa B Kinase/genetics , Nuclear Proteins/genetics , Protein-Tyrosine Kinases/genetics , Swine , Transcriptome
3.
Sci Transl Med ; 9(371)2017 01 04.
Article En | MEDLINE | ID: mdl-28053158

Chronic nonhealing venous leg ulcers (VLUs) are widespread and debilitating, with high morbidity and associated costs; about $15 billion is spent annually on the care of VLUs in the United States. Despite this, there is a paucity of treatments for VLUs because of the lack of pathophysiologic insight into ulcer development as well as the lack of knowledge regarding biologic actions of existing VLU-targeted therapies. The bioengineered bilayered living cellular construct (BLCC) skin substitute is a U.S. Food and Drug Administration-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with nonhealing VLUs were treated with either standard of care (compression therapy) or the BLCC together with standard of care. Tissue was collected from the VLU edge before and 1 week after treatment, and the samples underwent comprehensive microarray mRNA and protein analyses. Ulcers treated with the BLCC skin substitute displayed three distinct transcriptomic patterns, suggesting that BLCC induced a shift from a nonhealing to a healing tissue response, involving modulation of inflammatory and growth factor signaling, keratinocyte activation, and attenuation of Wnt/ß-catenin signaling. In these ways, BLCC application orchestrated a shift from the chronic nonhealing ulcer microenvironment to a distinctive healing milieu resembling that of an acute, healing wound. Our findings provide in vivo evidence in VLU patients of pathways that can be targeted in the design of new therapies to promote healing of chronic VLUs.


Biomedical Engineering/methods , Leg Ulcer/therapy , Skin, Artificial , Varicose Ulcer/therapy , Wound Healing , Adult , Aged , Biocompatible Materials , Biopsy , Collagen/therapeutic use , Cross-Over Studies , Female , Gene Expression Profiling , Humans , Middle Aged , Oligonucleotide Array Sequence Analysis , Phenotype , Skin/metabolism , Treatment Outcome , Young Adult , beta Catenin/metabolism
4.
J Invest Dermatol ; 137(5): 1144-1154, 2017 05.
Article En | MEDLINE | ID: mdl-28017831

Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. To understand how stress signals inhibit wound healing, we investigated the role of membranous glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, ß-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a major impact on understanding how stress response via GC signaling regulates homeostasis and its role in development and treatments of skin diseases, including wound healing. To test tissue specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-mediated signals may activate growth signals in various epithelial and mesenchymal tissues.


Epithelial Cells/metabolism , Glucocorticoids/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction , Wound Healing/physiology , Cell Line , Cell Movement/physiology , Cells, Cultured , Fibroblasts/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Keratinocytes/metabolism , Protein Kinase C/metabolism , Stress, Physiological/physiology , Type C Phospholipases/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
5.
PLoS One ; 10(8): e0137133, 2015.
Article En | MEDLINE | ID: mdl-26318001

Diabetes Mellitus (DM) is a chronic, severe disease rapidly increasing in incidence and prevalence and is associated with numerous complications. Patients with DM are at high risk of developing diabetic foot ulcers (DFU) that often lead to lower limb amputations, long term disability, and a shortened lifespan. Despite this, the effects of DM on human foot skin biology are largely unknown. Thus, the focus of this study was to determine whether DM changes foot skin biology predisposing it for healing impairment and development of DFU. Foot skin samples were collected from 20 patients receiving corrective foot surgery and, using a combination of multiple molecular and cellular approaches, we performed comparative analyses of non-ulcerated non-neuropathic diabetic foot skin (DFS) and healthy non-diabetic foot skin (NFS). MicroRNA (miR) profiling of laser captured epidermis and primary dermal fibroblasts from both DFS and NFS samples identified 5 miRs de-regulated in the epidermis of DFS though none reached statistical significance. MiR-31-5p and miR-31-3p were most profoundly induced. Although none were significantly regulated in diabetic fibroblasts, miR-29c-3p showed a trend of up-regulation, which was confirmed by qPCR in a prospective set of 20 skin samples. Gene expression profiling of full thickness biopsies identified 36 de-regulated genes in DFS (>2 fold-change, unadjusted p-value ≤ 0.05). Of this group, three out of seven tested genes were confirmed by qPCR: SERPINB3 was up-regulated whereas OR2A4 and LGR5 were down-regulated in DFS. However no morphological differences in histology, collagen deposition, and number of blood vessels or lymphocytes were found. No difference in proliferative capacity was observed by quantification of Ki67 positive cells in epidermis. These findings suggest DM causes only subtle changes to foot skin. Since morphology, mRNA and miR levels were not affected in a major way, additional factors, such as neuropathy, vascular complications, or duration of DM, may further compromise tissue's healing ability leading to development of DFUs.


Dermis/pathology , Diabetic Foot/genetics , Diabetic Foot/pathology , Epidermis/pathology , Genomics , MicroRNAs/genetics , Fibroblasts/metabolism , Foot Ulcer/genetics , Foot Ulcer/pathology , Gene Expression Profiling , Humans , Transcription, Genetic
...