Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769241

RESUMEN

Betanidin (Bd) is a nitrogenous metabolite with significant bioactive potential influenced by pH. Its free radical scavenging activity and deprotonation pathway are crucial to studying its physicochemical properties. Motivated by the published discrepancies about the best deprotonation routes in Bd, this work explores all possible pathways for proton extractions on that molecule, by using the direct approach method based on pKa. The complete space of exploration is supported by a linear relation with constant slope, where the pKa is written in terms of the associated deprotonated molecule energy. The deprotonation rounds 1, …, 6 define groups of parallel linear models with constant slope. The intercepts of the models just depend on the protonated energy for each round, and then the pKa can be trivially ordered and explained by the energy. We use the direct approximation method to obtain the value of pKa. We predict all possible outcomes based on a linear model of the energy and some related verified assumptions. We also include a new measure of similarity or dissimilarity between the protonated and deprotonated molecules, via a geometric-chemical descriptor called the Riemann-Mulliken distance (RMD). The RMD considers the cartesian coordinates of the atoms, the atomic mass, and the Mulliken charges. After exploring the complete set of permutations, we show that the successive deprotonation process does not inherit the local energy minimum and that the commutativity of the paths does not hold either. The resulting clusterization of pKa can be explained by the local acid and basic groups of the BD, and the successive deprotonation can be predicted by using the chemical explained linear models, which can avoid unnecessary optimizations. Another part of the research uses our own algorithm based on shape theory to determine the protein's active site automatically, and molecular dynamics confirmed the results of the molecular docking of Bd in protonated and anionic form with the enzyme aldose reductase (AR). Also, we calculate the descriptors associated with the SET and SPLET mechanisms.


Asunto(s)
Betacianinas , Protones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Modelos Lineales
2.
Molecules ; 27(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35335368

RESUMEN

Betanin and betanidin are compounds with extensive interest; they are effectively free radical scavengers. The present work aims to elucidate the differences between the mechanism of the antioxidant activity of betanin, betanidin, and their respective C15-epimers. Shape Theory establishes comparisons between the molecules' geometries and determines parallelisms with the descriptors BDE, PA, ETE IP, PDE, and infrared spectra (IR) obtained from the molecule simulations. Furthermore, the molecules were optimized using the B3LYP/6-31+G(d,p) protocol. Finally, the molecular docking technique analyzes the antioxidant activity of the compounds in the complex with the therapeutic target xanthine oxidase (XO), based on a new proposal for the geometrical arrangement of the ligand atoms in the framework of Shape Theory. The results obtained indicate that the SPLET mechanism is the most favorable in all the molecules studied and that the first group that loses the hydrogen atom in the four molecules is the C17COOH, presenting less PA the isobetanidin. Furthermore, regarding the molecular docking, the interactions of these compounds with the target were favorable, standing out to a greater extent the interactions of isobetanidin with XO, which were analyzed after applying molecular dynamics.


Asunto(s)
Antioxidantes , Betacianinas , Antioxidantes/química , Antioxidantes/farmacología , Betacianinas/química , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...