Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Expert Rev Mol Med ; 25: e14, 2023 03 17.
Article En | MEDLINE | ID: mdl-36927814

Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.


MicroRNAs , Neoplasms , RNA, Small Untranslated , Humans , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/pathology , Gene Expression Regulation, Neoplastic
2.
Cancers (Basel) ; 13(23)2021 Nov 23.
Article En | MEDLINE | ID: mdl-34885004

Uveal melanoma (UM) is the second-most-common melanoma in humans and has a high age-standardized incidence rate (ASR) in Australia. Regional patterns of UM ASRs in Australia are unknown. The aim of this study was to determine and compare UM ASRs in two geographically disparate eastern states, Queensland (QLD) and Victoria (VIC), by using cancer registry data that was obtained from 2001 to 2013. World-standardized UM ASRs and incidence-rate ratios (IRRs) were calculated. Higher UM ASR was also observed in anterior UM compared to posterior UM ASR. UM ASR remained unchanged from 2001 to 2013 in QLD but decreased in VIC. A south-to-north latitude trend in UM ASR along the east of Australia is weakly evident, and rural populations have higher UM ASRs than major city populations in both states. Differences in ultraviolent radiation (UVR) susceptibility, indigenous populations, social behaviours, chemical exposure, and socioeconomic status could all be contributing to differences in UM rates between QLD and VIC and between rural compared to major city areas. It is possible that a minority of cases in QLD and VIC might be prevented by sun-protective behaviours. This is important, because these findings suggest that QLD, which is already known to have one of the highest cutaneous melanoma (CM) ASRs in the world, also has one of the highest UM ASRs.

3.
Biomolecules ; 11(11)2021 11 03.
Article En | MEDLINE | ID: mdl-34827622

Age-related Macular degeneration (AMD) is a degenerative disease of the macula affecting the elderly population. Treatment options are limited, partly due to the lack of understanding of AMD pathology and the lack of suitable research models that replicate the complexity of the human macula and the intricate interplay of the genetic, aging and lifestyle risk factors contributing to AMD. One of the main genetic risks associated with AMD is located on the Complement Factor H (CFH) gene, leading to an amino acid substitution in the Factor H (FH) protein (Y402H). However, the mechanism of how this FH variant promotes the onset of AMD remains unclear. Previously, we have shown that FH deprivation in RPE cells, via CFH silencing, leads to increased inflammation, metabolic impairment and vulnerability toward oxidative stress. In this study, we established a novel co-culture model comprising CFH silenced RPE cells and porcine retinal explants derived from the visual streak of porcine eyes, which closely resemble the human macula. We show that retinae exposed to FH-deprived RPE cells show signs of retinal degeneration, with rod cells being the first cells to undergo degeneration. Moreover, via Raman analyses, we observed changes involving the mitochondria and lipid composition of the co-cultured retinae upon FH loss. Interestingly, the detrimental effects of FH loss in RPE cells on the neuroretina were independent of glial cell activation and external complement sources. Moreover, we show that the co-culture model is also suitable for human retinal explants, and we observed a similar trend when RPE cells deprived of FH were co-cultured with human retinal explants from a single donor eye. Our findings highlight the importance of RPE-derived FH for retinal homeostasis and provide a valuable model for AMD research.


Complement Factor H , Animals , Macular Degeneration , Retinal Degeneration , Swine
4.
Cancers (Basel) ; 13(7)2021 Apr 03.
Article En | MEDLINE | ID: mdl-33916693

Uveal melanoma (UM) is currently classified by the World Health Organisation as a melanoma caused by risk factors other than cumulative solar damage. However, factors relating to ultraviolet radiation (UVR) susceptibility such as light-coloured skin and eyes, propensity to burn, and proximity to the equator, frequently correlate with higher risk of UM. These risk factors echo those of the far more common cutaneous melanoma (CM), which is widely accepted to be caused by excessive UVR exposure, suggesting a role of UVR in the development and progression of a proportion of UM. Indeed, this could mean that countries, such as Australia, with high UVR exposure and the highest incidences of CM would represent a similarly high incidence of UM if UVR exposure is truly involved. Most cases of UM lack the typical genetic mutations that are related to UVR damage, although recent evidence in a small minority of cases has shown otherwise. This review therefore reassesses statistical, environmental, anatomical, and physiological evidence for and against the role of UVR in the aetiology of UM.

5.
Blood Cells Mol Dis ; 87: 102522, 2021 03.
Article En | MEDLINE | ID: mdl-33260083

Stathmin 1 (STMN1) is a cytosolic phosphoprotein that was discovered as a result of its high level of expression in leukemic cells. It plays an important role in the regulation of mitosis by promoting depolymerization of the microtubules that make up the mitotic spindle and, aging has been shown to impair STMN1 levels and change microtubule stability. We have previously demonstrated that a high level of STMN1 expression during early megakaryopoiesis is necessary for proliferation of megakaryocyte progenitors and that down-regulation of STMN1 expression during late megakaryopoiesis is important for megakaryocyte maturation and platelet production. In this report, we examined the effects of STMN1 deficiency on erythroid and megakaryocytic lineages in the mouse. Our studies show that STMN1 deficiency results in mild thrombocytopenia in young animals which converts into profound thrombocythemia as the mice age. STMN1 deficiency also lead to macrocytic changes in both erythrocytes and megakaryocytes that persisted throughout the life of STMN1 knock-out mice. Furthermore, STMN1 knock-out mice displayed a lower number of erythroid and megakaryocytic progenitor cells and had delayed recovery of their blood counts after chemotherapy. These studies show an important role for STMN1 in normal erythro-megakaryopoietic development and suggests potential implications for disorders affecting these hematopoietic lineages.


Anemia, Macrocytic/genetics , Erythroid Precursor Cells/pathology , Megakaryocytes/pathology , Stathmin/genetics , Thrombocytosis/genetics , Anemia, Macrocytic/pathology , Animals , Blood Platelets/pathology , Erythropoiesis , Female , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Thrombocytosis/pathology
6.
Toxicol In Vitro ; 63: 104716, 2020 Mar.
Article En | MEDLINE | ID: mdl-31706033

One of the major challenges in studying ocular toxicology is a lack of clinically-relevant retinal experimental models. In this study we describe the use of an in vitro human retinal explant strategy to generate a reproducible experimental model with utility in neuro-toxicity retinal studies. A retinal dissection strategy, referred to as the 8 fold quadrant dissection, was developed by dissecting human donor retinas into 4 fragments through the fovea in order to obtain 8 experimentally reproducible retinal explants from a single donor. This quadrant dissection gave rise to equivalent proportions of CD73+ photoreceptors and CD90+ ganglion cells in 8 fragments from a single donor and this remained stable for up to 3 days in culture. Major retinal cell types continued to be observed after 8 weeks in culture, despite breakdown of the retinal layers, suggesting the potential to use this model in long-term studies where observation of individual cell types is possible. The utility of this system was examined in a proof of principle neuro-toxicology study. We showed reproducible induction of toxicity in photoreceptors and retinal ganglion cells by glutamate, cobalt chloride and hydrogen peroxide insults, and observed the therapeutic positive effects of the administration of memantine, formononetin and trolox. The quadrant dissected human retinal explants have the potential to be used in toxicology studies in human ocular diseases.


Neuroprotective Agents/toxicity , Organ Culture Techniques , Retina/drug effects , Adult , Aged , Aged, 80 and over , Animal Testing Alternatives , Drug Evaluation, Preclinical , Humans , Middle Aged , Neuroglia/drug effects , Neurons/drug effects
7.
Gene Ther ; 26(6): 250-263, 2019 06.
Article En | MEDLINE | ID: mdl-30962537

Recombinant Adeno-associated viruses (AAVs) are an attractive vector for gene therapy delivery which may be blocked by AAV neutralising antibodies (NAbs). As Type 1 Diabetes (T1DM) is an endocrine disease of immunological origin, it is likely that NAb profiles are altered in the disease. In this study NAb to AAV2, AAV5, AAV6, and AAV8 in 72 subjects with T1DM and 45 non-diabetic patients were measured over a 4-year follow-up period. AAV2 NAb titres were significantly lower in non-diabetic subjects (P = 0.036). The T1DM group had more AAV8 NAb activity at baseline (P = 0.019), whilst after 4 years follow-up the T1DM group displayed developed increased AAV 5 (P = 0.03), 6 (P = 0.03) and 8 (P = 0.002) activity relative to the control group, however, overall AAV5 and 8 NAb levels were very low in patients <40. AAV NAb titre activity and prevalence generally appears higher in T1DM, however, low levels of AAV 5 and 8, particular in younger adult age groups at which T1DM can be targeted, could make these attractive vectors to target the disease.


Antibodies, Neutralizing/immunology , Dependovirus/immunology , Diabetes Mellitus, Type 1/blood , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/blood , COS Cells , Chlorocebus aethiops , Diabetes Mellitus, Type 1/immunology , Female , Gene Transfer Techniques/adverse effects , Humans , Male , Middle Aged
8.
Clin Exp Ophthalmol ; 47(2): 274-285, 2019 03.
Article En | MEDLINE | ID: mdl-30378239

The retina is the tissue responsible for light detection, in which retinal neurons convert light energy into electrical signals to be transported towards the visual cortex. Damage of retinal neurons leads to neuronal cell death and retinal pathologies, compromising visual acuity and eventually leading to irreversible blindness. Models of retinal neurodegeneration include 2D systems like cell lines, disassociated cultures and co-cultures, and 3D models like organoids, organotypic retinal cultures and animal models. Of these, ex vivo human retinal cultures are arguably the most suitable models for translational research as they retain complex inter-cellular interactions of the retina and precisely mimic in-situ responses. In this review, we summarize the distinguishing features of the human retina which are important to preserve in experimental culture, the historical development of human retinal culture systems, the factors affecting ex vivo human retinal culture and the applications and challenges associated with current methods of human retinal explant culture.


Organ Culture Techniques , Retina/cytology , Animals , Humans , Neovascularization, Physiologic/physiology , Retinal Vessels/physiology
9.
Clin Exp Ophthalmol ; 47(4): 521-536, 2019 05.
Article En | MEDLINE | ID: mdl-30345694

Voretigene neparvovec-rzyl was recently approved for the treatment of Leber congenital amaurosis, and the use of gene therapy for eye disease is attracting even greater interest. The eye has immune privileged status, is easily accessible, requires a reduced dosage of therapy due to its size and is highly compartmentalized, significantly reducing systemic spread. Adeno-associated virus (AAV), with its low pathogenicity, prolonged expression profile and ability to transduce multiple cell types, has become the leading gene therapy vector. Target diseases have moved beyond currently untreatable inherited dystrophies to common, partially treatable acquired conditions such as exudative age-related macular degeneration and glaucoma, but use of the technology in these conditions imposes added obligations for caution in vector design. This review discusses the current status of AAV gene therapy trials in genetic and acquired ocular diseases, and explores new scientific developments, which could help ensure effective and safe use of the therapy in the future.


Clinical Trials as Topic , Dependovirus/genetics , Eye Diseases, Hereditary/therapy , Eye Diseases/therapy , Genetic Therapy , Genetic Vectors/genetics , Eye Diseases/genetics , Eye Diseases, Hereditary/genetics , Forecasting , Humans , Molecular Biology , Safety Management
10.
Sci Rep ; 8(1): 15539, 2018 10 19.
Article En | MEDLINE | ID: mdl-30341383

In hepatocellular carcinoma (HCC), which usually develops in a cirrhotic liver, treatments preserving normal liver function and viability are vitally important. Here, we utilise the differential expression of miRNAs 122a and 199a between normal hepatocytes and HCC to generate vectors harbouring their binding sites for hepatocyte detargeting. Using a reporter gene, we observed a synergistic detargeting of cells expressing both miRNAs as well as cells expressing either of the miRNAs; while expression was retained in HCC cells negative for both miRNA122a and miRNA199a. Mimics and inhibitors for individual miRNAs were used to confirm these results. Furthermore, suicide gene therapy with cytosine deaminase (CD)/5-fluorocytosine system resulted in limited killing of cells expressing either of the two miRNAs. Finally, we report feasibility of using adeno associated virus (AAV) based vectors for delivery of this dual regulated gene delivery system. These results present a novel dual targeted system whereby miRNA122a and miRNA199a act either synergistically or independently in regulating transgene expression with vectors harbouring binding sites of both miRNAs and have implications in detargeting vectors from multiple cell types in the liver.


Carcinoma, Hepatocellular/therapy , Genetic Therapy/methods , MicroRNAs/antagonists & inhibitors , Nucleic Acid Hybridization , Binding Sites , Cells, Cultured , Genetic Vectors , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological
11.
Mol Ther Nucleic Acids ; 13: 78-88, 2018 Dec 07.
Article En | MEDLINE | ID: mdl-30245470

A gene therapeutic platform needs to be both efficient and safe. The criterion of safety is particularly important for diseases like hepatocellular carcinoma (HCC), which develop in a background of an already compromised liver. Gene vectors can be constructed either by targeting HCC or by detargeting liver and/or other major organs. miRNA-based negative detargeting has gained considerable attention in recent times due to its effectiveness and the ease with which it can be adapted into current gene delivery vectors. In this study, we provide a proof-of-concept using miRNA199a as a negative targeting agent. We introduced vectors harboring reporters with miRNA199a binding sites in cells expressing high endogenous levels of miRNA199a and compared the reporter expression in HCC cells with low endogenous miRNA199a. We observed that the expression of reporters with miRNA199a binding sites is significantly inhibited in miRNA199a-positive cells, whereas minimal effect was observed in miRNA199a-negative HCC cells. In addition, we created a post-transcriptionally regulated suicide gene therapeutic system based on cytosine deaminase (CD)/5-fluorocytosine (5-FC) exploiting miRNA199a binding sites and observed significantly lower cell death for miRNA199a-positive cells. Furthermore, we observed a decrease in the levels of miRNA199 in 3D tumorspheres of miRNA199a-positive Hepa1-6 cells and a reduction in the inhibition of reporter expression after transfection in these 3D models when compared with 2D Hepa1-6 cells. In summary, we provide evidence of miRNA199a-based post-transcriptional detargeting with relevance to HCC gene therapy.

12.
Molecules ; 23(7)2018 Jun 21.
Article En | MEDLINE | ID: mdl-29933586

Targeted gene delivery relies on the ability to limit the expression of a transgene within a defined cell/tissue population. MicroRNAs represent a class of highly powerful and effective regulators of gene expression that act by binding to a specific sequence present in the corresponding messenger RNA. Involved in almost every aspect of cellular function, many miRNAs have been discovered with expression patterns specific to developmental stage, lineage, cell-type, or disease stage. Exploiting the binding sites of these miRNAs allows for construction of targeted gene delivery platforms with a diverse range of applications. Here, we summarize studies that have utilized miRNA-regulated systems to achieve targeted gene delivery for both research and therapeutic purposes. Additionally, we identify criteria that are important for the effectiveness of a particular miRNA for such applications and we also discuss factors that have to be taken into consideration when designing miRNA-regulated expression cassettes.


Gene Transfer Techniques , Genetic Therapy/methods , MicroRNAs/genetics , Molecular Targeted Therapy/methods , RNA, Messenger/antagonists & inhibitors , Animals , Binding Sites , Humans , MicroRNAs/metabolism , Oncolytic Virotherapy/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transgenes
13.
Oncotarget ; 9(34): 23577-23588, 2018 May 04.
Article En | MEDLINE | ID: mdl-29805757

In this study, we report a miRNA122a based targeted gene therapy for hepatocellular cancer stem cells (CSCs). First, we assessed the levels of miRNA122a in normal human hepatocytes, a panel of hepatocellular carcinoma (HCC) cell lines and hepatocellular CSCs observing its significant downregulation in HCC and CSCs. The miRNA122a binding site was then incorporated at the 3'-UTR of reporter genes gaussia luciferase (GLuc) and eGFP which resulted in significant hepatocyte detargeting. Using this strategy for the delivery of gene directed enzyme prodrug therapy (GDEPT) utilizing the cytosine deaminase/5-fluorocytosine (CD/5-FC) system, we showed significant killing in cells with low or no miRNA122a while those cells, such as hepatocytes with high miRNA122a were largely spared. Next, we showed that CSC enriched tumorspheres exhibit a significant downregulation of miRNA122a expression providing a rational to exploit its binding site for targeted gene delivery. Using plasmids harboring reporters GLuc and eGFP with or without miR122a binding sites, we showed high reporter expression in the CSCs and little reported expression in the non-enriched cultures. Finally, we demonstrate the efficacy of miRNA122a based post-transcriptionally targeted GDEPT for hepatocellular CSCs.

14.
Gene Ther ; 25(2): 115-128, 2018 04.
Article En | MEDLINE | ID: mdl-29563582

Hepatocellular carcinoma (HCC) is a major health problem as evidenced by its increasing incidence and high morbidity and mortality rates. Most patients with HCC have underlying liver disease and dysfunction which limits the current therapeutic options. Treatments that spare the liver and destroy the HCC are needed. Targeting transcriptional differences between HCC and liver cells may provide this therapeutic window. In this study, we examine the potential of the Glypican 3 (GPC3) promoter as a targeting strategy. GPC3 is an oncofetal protein belonging to the proteoglycan family which is normally only expressed during fetal development. However, in HCC, the expression of this protein is reactivated. Here, we show that GPC3 is expressed primarily in HCC and not in normal liver lines. We show that the GPC3 promoter can be used to drive expression of significantly more luciferase and eYFP in HCC cell lines compared to normal liver cells. Further, we show that vectors containing cytosine deaminase (CD) under GPC3 promotor control induced significantly more killing of HCC cell lines after treatment with 5-FC compared to normal liver cell lines. These data suggest that transcriptionally targeted delivery of transgene in HCC cells can be achieved using the GPC3 promoter and this targeting strategy produces limited toxicity to normal liver cells.


Carcinoma, Hepatocellular/genetics , Genetic Therapy , Glypicans/genetics , Liver Neoplasms/genetics , Promoter Regions, Genetic , Transcription, Genetic , Carcinoma, Hepatocellular/therapy , Case-Control Studies , Dependovirus/genetics , Humans , Liver Neoplasms/therapy , alpha-Fetoproteins/genetics
15.
World J Stem Cells ; 9(9): 159-168, 2017 Sep 26.
Article En | MEDLINE | ID: mdl-29026462

AIM: To establish a model to enrich and characterize stem-like cells from murine normal liver and hepatocellular carcinoma (HCC) cell lines and to further investigate stem-like cell association with epithelial-to-mesenchymal transition (EMT). METHODS: In this study, we utilized a stem cell conditioned serum-free medium to enrich stem-like cells from mouse HCC and normal liver cell lines, Hepa 1-6 and AML12, respectively. We isolated the 3-dimensional spheres and assessed their stemness characteristics by evaluating the RNA levels of stemness genes and a cell surface stem cell marker by quantitative reverse transcriptase-PCR (qRT-PCR). Next, we examined the relationship between stem cells and EMT using qRT-PCR. RESULTS: Three-dimensional spheres were enriched by culturing murine HCC and normal hepatocyte cell lines in stem cell conditioned serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor and heparin sulfate. The 3-dimensional spheres had enhanced stemness markers such as Klf4 and Bmi1 and hepatic cancer stem cell (CSC) marker Cd44 compared to parental cells grown as adherent cultures. We report that epithelial markers E-cadherin and ZO-1 were downregulated, while mesenchymal markers Vimentin and Fibronectin were upregulated in 3-dimensional spheres. The 3-dimensional spheres also exhibited changes in expression of Snai, Zeb and Twist family of EMT transcription factors. CONCLUSION: Our novel method successfully enriched stem-like cells which possessed an EMT phenotype. The isolation and characterization of murine hepatic CSCs could establish a precise target for the development of more effective therapies for HCC.

16.
Transl Lung Cancer Res ; 3(1): 46-52, 2014 Feb.
Article En | MEDLINE | ID: mdl-25806280

Designing a cancer treatment that very specifically targets and kills tumor cells with little to no side effects is the "holy grail" of oncology. Cancer vaccines have this potential. Vaccines utilize the immune system to specifically target and eliminate tumor cells. Historically, vaccination approaches against lung cancer have been disappointing. However, over the past decade, a greater understanding of the immune system and of the antigens expressed by tumors, coupled with advances in immunoadjuvants and improved delivery systems, has led to advances in the use of immunotherapy including vaccines to target lung cancer. Proof of principle phase I/II clinical trials targeting the MAGE-A3 and MUC1 tumor antigens, as well as cell-based vaccines such as belagenpumatucel-L have suggested improved survival, leading to larger scale phase III clinical trials. This review will discuss cancer vaccines in relation to lung cancer and present clinical data supporting their use.

...