Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 1(5): e002584, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23316294

RESUMEN

BACKGROUND: Mineralocorticoid receptor (MR) antagonists have protective effects in the brain during experimental ischemic stroke, and we have previously demonstrated a key role for myeloid MR during stroke pathogenesis. In this study, we explore both model- and sex-specific actions of myeloid MR during ischemic stroke. METHODS AND RESULTS: The MR antagonist eplerenone significantly reduced the infarct size in male (control, 99.5 mm(3); eplerenone, 74.2 mm(3); n=8 to 12 per group) but not female (control, 84.0 mm(3); eplerenone, 83.7 mm(3); n=6 to 7 per group) mice after transient (90-minute) middle cerebral artery occlusion. In contrast to MR antagonism, genetic ablation of myeloid MR in female mice significantly reduced infarct size (myeloid MR knockout, 9.4 mm(3) [5.4 to 36.6]; control, 66.0 mm(3) [50.0 to 81.4]; n=6 per group) after transient middle cerebral artery occlusion. This was accompanied by reductions in inflammatory gene expression and improvement in neurological function. In contrast to ischemia-reperfusion, myeloid MR-knockout mice were not protected from permanent middle cerebral artery occlusion. The infarct size and inflammatory response after permanent occlusion showed no evidence of protection by myeloid MR knockout in photothrombotic and intraluminal filament models of permanent occlusion. CONCLUSIONS: These studies demonstrate that MR antagonism is protective in male but not female mice during transient middle cerebral artery occlusion, whereas genetic ablation of myeloid MR is protective in both male and female mice. They also highlight important mechanistic differences in the role of myeloid cells in different models of stroke and confirm that specific myeloid phenotypes play key roles in stroke protection.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Antagonistas de Receptores de Mineralocorticoides/farmacología , Receptores de Mineralocorticoides/metabolismo , Espironolactona/análogos & derivados , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Eplerenona , Femenino , Perfilación de la Expresión Génica , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Ratones , Ratones Noqueados , Espironolactona/farmacología , Accidente Cerebrovascular/fisiopatología
2.
Biochem J ; 439(3): 497-504, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21732912

RESUMEN

Our recent studies have been aimed at understanding the mechanisms regulating apical protein sorting in polarized epithelial cells. In particular, we have been investigating how lipid rafts serve to sort apical proteins in the biosynthetic pathway. The recent findings that lipid domains are too small or transient to host apically destined cargo have led to newer versions of the hypothesis that invoke proteins required for lipid domain coalescence and stabilization. MAL (myelin and lymphocyte protein) and its highly conserved family member, MAL2, have emerged as possible regulators of this process in the direct and indirect apical trafficking pathways respectively. To test this possibility, we took a biochemical approach. We determined that MAL, but not MAL2, self-associates, forms higher-order cholesterol-dependent complexes with apical proteins and promotes the formation of detergent-resistant membranes that recruit apical proteins. Such biochemical properties are consistent with a role for MAL in raft coalescence and stabilization. These findings also support a model whereby hydrophobic mismatch between the long membrane-spanning helices of MAL and the short-acyl-chain phospholipids in the Golgi drive formation of lipid domains rich in raft components that are characterized by a thicker hydrophobic core to alleviate mismatch.


Asunto(s)
Colesterol/fisiología , Regulación de la Expresión Génica , Microdominios de Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas de la Mielina/fisiología , Proteolípidos/fisiología , Proteínas de Transporte Vesicular , Animales , Células Cultivadas , Colesterol/química , Microdominios de Membrana/química , Microdominios de Membrana/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de la Mielina/química , Proteínas de la Mielina/genética , Proteínas Proteolipídicas Asociadas a Mielina y Linfocito , Estructura Terciaria de Proteína/genética , Proteolípidos/química , Proteolípidos/genética , Ratas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA