Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Neoplasia ; 53: 101003, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759377

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.

2.
bioRxiv ; 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37131821

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to numerous growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT pathway may be a key target in ER stress and dysfunction.

3.
Mol Biol Cell ; 34(7): ar72, 2023 06 01.
Article En | MEDLINE | ID: mdl-37126382

ßIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for ßIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, ßIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing ßIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of ßIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce ßIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that ßIV-spectrin acts upstream of these pathways as loss of ßIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate ßIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.


Growth Differentiation Factor 2 , Spectrin , Animals , Mice , Endothelial Cells/metabolism , Growth Differentiation Factor 2/metabolism , Neovascularization, Physiologic/physiology , Signal Transduction/physiology , Spectrin/metabolism
4.
Nat Commun ; 13(1): 1326, 2022 03 14.
Article En | MEDLINE | ID: mdl-35288568

Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report ßIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific ßIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, ßIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, ßIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development.


Spectrin , Vascular Endothelial Growth Factor A , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mice , Neovascularization, Physiologic , Proteomics , Signal Transduction , Spectrin/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
5.
Mol Biol Cell ; 33(1): ar4, 2022 01 01.
Article En | MEDLINE | ID: mdl-34705526

Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission, a large cytoplasmic GTPase recruited to the mitochondrial surface via transmembrane adaptors to initiate scission. While Brownian motion likely accounts for the local interactions between Drp1 and the mitochondrial adaptors, how this essential enzyme is targeted from more distal regions like the cell periphery remains unknown. Based on proteomic interactome screening and cell-based studies, we report that GAIP/RGS19-interacting protein (GIPC) mediates the actin-based retrograde transport of Drp1 toward the perinuclear mitochondria to enhance fission. Drp1 interacts with GIPC through its atypical C-terminal PDZ-binding motif. Loss of this interaction abrogates Drp1 retrograde transport resulting in cytoplasmic mislocalization and reduced fission despite retaining normal intrinsic GTPase activity. Functionally, we demonstrate that GIPC potentiates the Drp1-driven proliferative and migratory capacity in cancer cells. Together, these findings establish a direct molecular link between altered GIPC expression and Drp1 function in cancer progression and metabolic disorders.


Adaptor Proteins, Signal Transducing/metabolism , Dynamins/metabolism , Mitochondrial Dynamics/physiology , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Cytoplasm/metabolism , Cytosol/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Binding , Proteomics
...