Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 14235-14245, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38719200

RESUMEN

Pyrroloiminoquinone-containing natural products have long been known for their biological activities. They are derived from tryptophan, but their biosynthetic pathways have remained elusive. Studies on the biosynthetic gene cluster (BGC) that produces the ammosamides revealed that the first step is attachment of Trp to the C-terminus of a scaffold peptide in an ATP- and tRNA-dependent manner catalyzed by a PEptide Aminoacyl-tRNA Ligase (PEARL). The indole of Trp is then oxidized to a hydroxyquinone. We previously proposed a chemically plausible and streamlined pathway for converting this intermediate to the ammosamides using additional enzymes encoded in the BGC. In this study, we report the activity of four additional enzymes from two gene clusters, which show that the previously proposed pathway is incorrect and that Nature's route toward pyrroloiminoquinones is much more complicated. We demonstrate that, surprisingly, amino groups in pyrroloiminoquinones are derived from (at least) three different sources, glycine, asparagine, and leucine, all introduced in a tRNA-dependent manner. We also show that an FAD-dependent putative glycine oxidase (Amm14) is required for the process that incorporates the nitrogens from glycine and leucine and that a quinone reductase is required for the incorporation of asparagine. Additionally, we provide the first insights into the evolutionary origin of the PEARLs as well as related enzymes, such as the glutamyl-tRNA-dependent dehydratases involved in the biosynthesis of lanthipeptides and thiopeptides. These enzymes appear to all have descended from the ATP-GRASP protein family.


Asunto(s)
Pirroliminoquinonas , Pirroliminoquinonas/metabolismo , Pirroliminoquinonas/química , Familia de Multigenes , Vías Biosintéticas
2.
Foods ; 12(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37761100

RESUMEN

The demand for sustainable and functional plant-based products is on the rise. Plant proteins and polysaccharides often provide emulsification and stabilization properties to food and food ingredients. Recently, chickpea cooking water, also known as aquafaba, has gained popularity as a substitute for egg whites in sauces, food foams, and baked goods due to its foaming and emulsifying capacities. This study presents a modified eco-friendly process to obtain process water from faba beans and isolate and characterize the foam-inducing components. The isolated material exhibits similar functional properties, such as foaming capacity, to aquafaba obtained by cooking pulses. To isolate the foam-inducing component, the faba bean process water was mixed with anhydrous ethanol, and a precipitated fraction was obtained. The precipitate was easily dissolved, and solutions prepared with the alcohol precipitate retained the foaming capacity of the original extract. Enzymatic treatment with α-amylase or protease resulted in reduced foaming capacity, indicating that both protein and carbohydrates contribute to the foaming capacity. The dried precipitate was found to be 23% protein (consisting of vicilin, α-legumin, and ß-legumin) and 77% carbohydrate (amylose). Future investigations into the chemical structure of this foam-inducing agent can inform the development of foaming agents through synthetic or enzymatic routes. Overall, this study provides a potential alternative to aquafaba and highlights the importance of exploring plant-based sources for functional ingredients in the food industry.

3.
Methods Enzymol ; 685: 57-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37245915

RESUMEN

Phosphate ester analogs in which the bridging oxygen is replaced with a methylene or fluoromethylene group are well known non-hydrolyzable mimics of use as inhibitors and substrate analogs for reactions involving phosphate esters. Properties of the replaced oxygen are often best mimicked by a mono-fluoromethylene group, but such groups are challenging to synthesize and can exist as two stereoisomers. Here, we describe the protocol for our method of synthesizing the α-fluoromethylene analogs of d-glucose 6-phosphate (G6P), as well as the methylene and difluoromethylene analogs, and their application in the study of 1l-myo-inositol-1-phosphate synthase (mIPS). mIPS catalyzes the synthesis of 1l-myo-inositol 1-phosphate (mI1P) from G6P, in an NAD-dependent aldol cyclization. Its key role in myo-inositol metabolism makes it a putative target for the treatment of several health disorders. The design of these inhibitors allowed for the possibility of substrate-like behavior, reversible inhibition, or mechanism-based inactivation. In this chapter, the synthesis of these compounds, expression and purification of recombinant hexahistidine-tagged mIPS, the mIPS kinetic assay and methods for determining the behavior of the phosphate analogs in the presence of mIPS, and a docking approach to rationalizing the observed behavior are described.


Asunto(s)
Glucosa-6-Fosfato , Organofosfonatos , Mio-Inositol-1-Fosfato Sintasa/química , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Fosfatos , Glucosa
4.
Chembiochem ; 23(20): e202200285, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35943842

RESUMEN

Phosphonates are produced across all domains of life and used widely in medicine and agriculture. Biosynthesis almost universally originates from the enzyme phosphoenolpyruvate mutase (Ppm), EC 5.4.2.9, which catalyzes O-P bond cleavage in phosphoenolpyruvate (PEP) and forms a high energy C-P bond in phosphonopyruvate (PnPy). Mechanistic scrutiny of this unusual intramolecular O-to-C phosphoryl transfer began with the discovery of Ppm in 1988 and concluded in 2008 with computational evidence supporting a concerted phosphoryl transfer via a dissociative metaphosphate-like transition state. This mechanism deviates from the standard 'in-line attack' paradigm for enzymatic phosphoryl transfer that typically involves a phosphoryl-enzyme intermediate, but definitive evidence is sparse. Here we review the experimental evidence leading to our current mechanistic understanding and highlight the roles of previously underappreciated conserved active site residues. We then identify remaining opportunities to evaluate overlooked residues and unexamined substrates/inhibitors.


Asunto(s)
Organofosfonatos , Fosfotransferasas (Fosfomutasas) , Fosfoenolpiruvato/química , Fosfotransferasas (Fosfomutasas)/química , Catálisis
5.
Biochemistry ; 61(10): 868-878, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35467843

RESUMEN

The biosynthesis of myo-inositol (mI) is central to the function of many organisms across all kingdoms of life. The first and rate-limiting step in this pathway is catalyzed by 1l-myo-inositol 1-phosphate synthase (mIPS), which converts d-glucose 6-phosphate (G6P) into 1l-myo-inositol 1-phosphate (mI1P). Extensive studies have shown that this reaction occurs through a stepwise NAD+-dependent redox aldol cyclization mechanism producing enantiomerically pure mI1P. Although the stereochemical nature of the mechanism has been elucidated, there is a lack of understanding of the importance of amino acid residues in the active site. Crystal structures of mIPS in the ternary complex with substrate analogues and NAD(H) show different ligand orientations. We therefore proposed to use isosteric and isoelectronic analogues of G6P to probe the active site. Here, we report the synthesis of the methylenephosphonate, difluoromethylenephosphonate, and (R)- and (S)-monofluoromethylenephosphonate analogues of G6P and their evaluation as inhibitors of mIPS activity. While the CH2 and CF2 analogues were produced with slight modification of a previously described route, the CHF analogues were synthesized through a new, shorter pathway. Kinetic behavior shows that all compounds are reversible competitive inhibitors with respect to G6P, with Ki values in the order CF2 (0.18 mM) < (S)-CHF (0.24 mM) < (R)-CHF (0.59 mM) < CH2 (1.2 mM). Docking studies of these phosphonates using published crystal structures show that substitution of the oxygen atom of the substrate changes the conformation of the resulting inhibitors, altering the position of carbon-6 and carbon-5, and this change is more pronounced with fluorine substitution.


Asunto(s)
Mio-Inositol-1-Fosfato Sintasa , Organofosfonatos , Carbono , Dominio Catalítico , Glucosa , Glucosa-6-Fosfato , Fosfatos de Inositol , Mio-Inositol-1-Fosfato Sintasa/química , NAD/metabolismo , Organofosfonatos/química , Fosfatos
6.
Biochemistry ; 59(32): 2974-2985, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32786400

RESUMEN

myo-Inositol (mI) is widely distributed in all domains of life and is important for several cellular functions, including bacterial survival. The enzymes responsible for the bacterial catabolism of mI, encoded in the iol operon, can vary from one organism to another, and these pathways have yet to be fully characterized. We previously identified a new scyllo-inositol dehydrogenase (sIDH) in the iol operon of Lactobacillus casei that can oxidize mI in addition to the natural substrate, scyllo-inositol, but the product of mI oxidation was not determined. Here we report the identification of these metabolites by monitoring the reaction with 13C nuclear magnetic resonance. We prepared all six singly 13C-labeled mI isotopomers through a biocatalytic approach and used these labeled inositols as substrates for sIDH. The use of all six singly labeled mI isotopomers allowed for metabolite characterization without isolation steps. sIDH oxidation of mI produces 1l-5-myo-inosose preferentially, but also two minor products, 1d-chiro-inosose and 1l-chiro-inosose. Together with previous crystal structure data for sIDH, we were able to rationalize the observed oxidation preference. Our relatively simple procedure for the preparation of isotopically labeled mI standards can have broad applications for the study of mI biotransformations.


Asunto(s)
Isótopos de Carbono/química , Inositol/química , Inositol/metabolismo , Lacticaseibacillus casei/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...