Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Front Oncol ; 14: 1345656, 2024.
Article En | MEDLINE | ID: mdl-38725628

Background: Remimazolam is a new ultrashort-acting benzodiazepine for sedation and anesthesia. The effects of remimazolam and the mechanism by which it functions in cancer cells have not been determined. This research aimed to explore the mechanism of remimazolam action in colon cancer treatment, using bioinformatics analysis and in vitro experiments. Methods: Cell cycle progression, colony formation, self-renewal capacity, and apoptosis detection were performed in HCT8 cells treated with or without remimazolam. Transcriptome sequencing, Gene Ontology, Kyoto Encyclopedia of Genes and Genome, Protein-Protein Interaction, Gene Set Enrichment Analysis, Western blotting, and qPCR were performed to investigate the mechanism of action of remimazolam in HCT8 colon cancer cells. Results: Remimazolam promoted proliferation and cell-cycle progression of HCT8 cells. After remimazolam treatment, a total of 1,096 differentially expressed genes (DEGs) were identified: 673 genes were downregulated, and 423 genes were upregulated. The DEGs were enriched mainly in "DNA replication", "cell cycle", and "G1/S transition" related pathways. There were 15 DEGs verified by qPCR, and representative biomarkers were detected by Western Bloting. The remimazolam-mediated promotion of cell proliferation and cell cycle was reversed by G1T28, a CDK4/6 inhibitor. Conclusion: Remimazolam promoted cell-cycle progression and proliferation in HCT8 colon cancer cells, indicating that the long-term use of remimazolam has potential adverse effects in the anesthesia of patients with colon cancer.

2.
Oncogene ; 43(22): 1669-1687, 2024 May.
Article En | MEDLINE | ID: mdl-38594505

The focal adhesion kinase (FAK) tyrosine kinase is activated and upregulated in multiple cancer types including small cell lung cancer (SCLC). However, FAK inhibitors have shown limited efficacy in clinical trials for cancer treatment. With the aim of identifying potential therapeutic strategies to inhibit FAK for cancer treatment, we investigated long non-coding RNAs (lncRNAs) that potentially regulate FAK in SCLC. In this study, we identified a long non-coding RNA LINC01089 that binds and inhibits FAK phosphorylation (activation). Expression analysis revealed that LINC01089 was downregulated in SCLC tissues and negatively correlated with chemoresistance and survival in SCLC patients. Functionally, LINC01089 inhibited chemoresistance and progression of SCLC in vitro and in vivo. Mechanistically, LINC01089 inhibits FAK activation by blocking binding with Src and talin kinases, while FAK negatively regulates LINC01089 transcription by activating the ERK signaling pathway to recruit the REST transcription factor. Furthermore, LINC01089-FAK axis mediates the expression of drug resist-related genes by modulating YBX1 phosphorylation, leading to drug resistance in SCLC. Intriguingly, the FAK-LINC01089 interaction depends on the co-occurrence of the novel FAK variant and the non-conserved region of LINC01089 in primates. In Conclusion, our results indicated that LINC01089 may serve as a novel high-efficiency FAK inhibitor and the FAK-LINC01089 axis represents a valuable prognostic biomarker and potential therapeutic target in SCLC.


Drug Resistance, Neoplasm , Focal Adhesion Kinase 1 , Lung Neoplasms , RNA, Long Noncoding , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , RNA, Long Noncoding/genetics , Animals , Mice , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Disease Progression , Cell Line, Tumor , Female , Phosphorylation , Mice, Nude , Male
3.
In Vivo ; 37(6): 2490-2497, 2023.
Article En | MEDLINE | ID: mdl-37905623

BACKGROUND/AIM: Endometriosis is an estrogen-dependent disease characterized by the ectopic implantation and growth of endometrial tissue outside the uterus. Endometrial stromal cells (ESCs) play a crucial role in the pathogenesis of endometriosis. Epithelial-mesenchymal transition (EMT) has recently been described in endometriosis and was induced by estrogen. Metformin has been shown to inhibit EMT in various diseases, but its role in endometriosis remains unclear. MATERIALS AND METHODS: We collected endometrial tissue samples from patients with endometriosis and healthy controls and isolated primary ESCs. We performed gene expression analysis using the Gene Expression Omnibus (GEO) dataset and validated the results by immunohistochemistry in tissue samples. We also assessed the effects of metformin on the proliferation, migration and invasion of ectopic ESCs (EESCs) by Cell Counting Kit-8 and Transwell migration and invasion assays, respectively. We analyzed the protein expression of EMT-related markers (N-cadherin, vimentin, twist, and snail) and ß-catenin by Western blotting and immunohistochemistry. RESULTS: We found that vimentin was highly expressed in ectopic endometrial tissues compared to normal endometrial tissues. Metformin treatment inhibited the proliferation, migration and invasion of EESCs in a dose-dependent manner. Metformin treatment also downregulated the expression of EMT-related markers and reduced the expression and nuclear translocation of ß-catenin in EESCs. CONCLUSION: Our results suggest that metformin inhibits estrogen-induced EMT and regulates the expression of ß-catenin in EESCs. This study provides new insights into the potential therapeutic role of metformin in endometriosis.


Endometriosis , beta Catenin , Female , Humans , beta Catenin/genetics , Vimentin/metabolism , Endometriosis/drug therapy , Endometriosis/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Stromal Cells/metabolism , Estrogens/pharmacology , Estrogens/metabolism , Endometrium/pathology , Cell Proliferation
4.
Stem Cell Res Ther ; 14(1): 273, 2023 09 27.
Article En | MEDLINE | ID: mdl-37759328

BACKGROUND: Identification of promising targeted antigens that exhibited cancer-specific expression is a crucial step in the development of novel antibody-targeted therapies. We here aimed to investigate the anti-tumor activity of a novel monoclonal antibody (mAb) 11C9 and identify the antibody tractable target in the hepatocellular cancer stem cells (HCSCs). METHODS: The identification of the targeted antigen was conducted using SDS-PAGE, western blot, mass spectrometry, and co-immunoprecipitation. Silence of HSP90 was induced by siRNA interference. Positive cells were sorted by fluorescence-activated cell sorting. Double-immunofluorescent (IF) staining and two-color flow cytometry detected the co-expression. Self-renewal, invasion, and drug resistance were assessed by sphere formation, matrigel-coated Transwell assay, and CCK-8 assay, respectively. Tumorigenicity was evaluated in mouse xenograft models. RNA-seq and bioinformatics analysis were performed to explore the mechanism of mAb 11C9 and potential targets. RESULTS: MAb 11C9 inhibited invasion and self-renewal abilities of HCC cell lines and reversed the cisplatin resistance. HSP90 (~ 95 kDa) was identified as a targeted antigen of mAb 11C9. Tissue microarrays and online databases revealed that HSP90 was overexpressed in HCC and associated with a poor prognosis. FACS and double-IF staining showed the co-expression of HSP90 and CSCs markers (CD90 and ESA). In vitro and in vivo demonstrated the tumorigenic potentials of HSP90. The inhibition of HSP90 by siRNA interference or 17-AAG inhibitor both decreased the number of invasion, sphere cells, and CD90+ or ESA+ cells, as well as reversed the resistance. Bioinformatics analysis and western blot verified that HSP90 activated Wnt/ß-catenin signaling. CONCLUSIONS: The study preliminarily revealed the anti-tumor activity of mAb 11C9. More importantly, we identified HSP90 as a targeted antigen of mAb 11C9, which functions as an oncogene in phenotype shaping, stemness maintenance, and therapeutic resistance by activating Wnt/ß-catenin signaling.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , beta Catenin/metabolism , Cell Line, Tumor , RNA, Small Interfering/metabolism , Disease Models, Animal , Neoplastic Stem Cells/metabolism , Cell Proliferation
5.
Discov Oncol ; 14(1): 137, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37490168

BACKGROUND: Propofol is a common sedative-hypnotic drug used for general anesthesia. Recent studies have drawn attention to the antitumor effects of propofol, but the potential mechanism by which propofol suppresses colon cancer stemness and epithelial-mesenchymal transition (EMT) has not been fully elucidated. METHODS: For the in vitro experiments, we used propofol to treat LOVO and SW480 cells and Cell Counting Kit-8 (CCK-8) to detect proliferation. Self-renewal capacity, cell invasion and migration, flow cytometry analysis, qPCR and Western blotting were performed to detect the suppression of propofol to colon cancer cells and the underlying mechanism. Tumorigenicity and immunohistochemistry experiments were performed to confirm the role of propofol in vivo. RESULT: We observed that propofol could suppressed stem cell-like characteristics and EMT-related behaviors, including self-renewal capacity, cell invasion and migration in colon cancer cells, and even suppressed tumorigenicity in vivo. Furthermore, investigations of the underlying mechanism revealed that propofol treatment downregulated SIRT1. SIRT1 overexpression or knockdown affected the stemness and EMT of colon cancer cells. Additionally, propofol reversed stemness and EMT in cells with overexpressing SIRT1 and subsequently inhibited the Wnt/ß-catenin and PI3K/AKT/mTOR signaling pathways. Wnt/ß-catenin pathway inhibitor and PI3K/AKT/mTOR pathway inhibitor blocked the propofol-induced reduction of sphere-formation and cell invasion-migration. CONCLUSION: Propofol inhibits LOVO and SW480 cell stemness and EMT by regulating SIRT1 and the Wnt/ß-catenin and PI3K/AKT/mTOR signaling pathways. Our findings indicate that propofol inhibits SIRT1 in cancer and is advantageous in colon cancer surgical treatment of patients with high SIRT1 expression.

6.
Oncol Rep ; 50(2)2023 Aug.
Article En | MEDLINE | ID: mdl-37350398

Following the publication of the article, a concerned reader drew to the authors' attention that, in Fig. 1B and C on p. 316, two pairs of the data panels showing the results from invasion and migration assay experiments appeared to be overlapping, such that they would have been derived from the same original sources where they were intended to show the results from different experiments; moreover, on p. 1698, the '17­AAG / MG­63' data panels in Fig. 3B and C were also overlapping, albeit the images were presented at a different scale and in a slightly different orientation. After having examined their original data, the authors have realized that these figures were inadvertently assembled incorrectly. The corrected versions of Figs. 1 and 3, now showing the correct data in Fig. 1C (where the errors made in compiling the figure had occurred) and the correct data for the '17­AAG / MG­63' data panel in Fig. 3C, are shown on the next two pages. These corrections do not grossly affect either the results or the conclusions reported in this work. The authors all agree to the publication of this Corrigendum, and are grateful to the Editor of Oncology Reports for granting them the opportunity to correct the errors that were made during the assembly of these figures. Lastly, the authors apologize to the readership for any inconvenience these errors may have caused. [Oncology Reports 44: 313­324, 2020; DOI: 10.3892/or.2020.7597].

7.
Cancer Med ; 12(4): 4510-4520, 2023 02.
Article En | MEDLINE | ID: mdl-36047666

BACKGROUND: Cancer stem cells (CSCs) are responsible for drug resistance, cancer relapse, and metastasis. Here, we report the first analysis of Palladin expression and its impacts on stem cell-like properties in lung cancer. METHODS: Tissue microarrays were used to investigate Palladin expression and its association with prognosis. Immunofluorescence (IF), flow fluorescence assay, and Western blot were performed to detect Palladin expression in 6 NSCLC cell lines. Cell phenotypes and drug resistance were evaluated. Xenograft models were constructed to confirm the role of Palladin in vivo. RESULTS: By using the tissue microarrays, Palladin was identified to be highly expressed in the cytoplasm, specifically in the cytomembrane of NSCLC, and its high expression is associated with poor prognosis. Palladin is widely expressed and enriched in the sphere cells. The in vitro and in vivo studies showed that Palladin promoted stem cell-like properties, including cell viability, invasion, migration, self-renewal abilities, taxol resistance, and tumorigenicity. Western blot revealed that Palladin promoted the accumulation of ß-catenin and activated Wnt/ß-catenin signaling. Tissue microarrays analysis further confirmed the positive correlation between Palladin and ß-catenin. Wnt/ß-catenin pathway inhibitor blocked the Palladin-induced enhancement of sphere-forming. CONCLUSIONS: Palladin might act as an oncogene by promoting CSCs-like properties and tumorigenicity of NSCLC cells via the Wnt/ß-catenin signaling pathway. Besides, Palladin was identified to have the potential as a cell surface marker for LCSCs identification. These findings provide a possible target for developing putative agents targeted to LCSCs.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Neoplastic Stem Cells/metabolism , Cell Proliferation
8.
Article Zh | WPRIM | ID: wpr-924659

@#[摘 要] 目的:探索抗HSP90单克隆抗体28C10通过靶向肿瘤干细胞促进顺铂(cisplatin,DDP)对人胃癌细胞PAMC82恶性生物学行为的抑制效果及其可能的作用机制。方法: 28C10单独或与DDP联合处理人胃癌细胞PAMC82,采用不同实验方法检测该细胞的无血清成球能力、迁移和侵袭能力与克隆形成能力,CCK-8法检测28C10对PAMC82细胞恶性生物学行为和协同DDP抗癌能力的影响。采用细胞免疫荧光及流式细胞术检测PAMC82细胞中HSP90及eHSP90(extracellular HSP90)的表达、定位、eHSP90+亚群比例,以及28C10处理后对ALDH+、CD44+、eHSP90+细胞亚群的影响。采用WB实验检测28C10作用后PAMC82细胞中HSP90、干性相关蛋白以及PI3K/AKT/mTOR信号通路蛋白表达的变化。结果:胃癌细胞PAMC82膜表面表达eHSP90,具有2%~3%的eHSP90+细胞亚群,且eHSP90+细胞多为与ALDH+或CD44+共阳性细胞。28C10处理能显著抑制PAMC82细胞的成球、克隆形成、增殖、耐药、迁移及侵袭能力,而且和DDP联用的效果更明显(P<0.05或P<0.01)。流式细胞术分析发现28C10处理显著抑制PAMC82细胞的eHSP90+、ALDH+和CD44+亚群数量(均P<0.01)。免疫荧光实验发现28C10作用后eHSP90发生内吞,WB实验结果显示eHSP90、CD44、ALDH和干性相关蛋白OCT4、SOX2表达量均降低(P<0.05或P<0.01)。结论:抗HSP90单克隆抗体28C10可靶向胃癌PAMC82细胞的ALDH+、CD44+肿瘤干细胞相关亚群、内化eHSP90且降低细胞总HSP90的水平、抑制PI3K/AKT/mTOR信号通路,从而有效地抑制PAMC82细胞的干性、耐药和其他恶性生物学行为,协同DDP显著提高抗癌效果。

9.
Cell Death Discov ; 7(1): 282, 2021 Oct 11.
Article En | MEDLINE | ID: mdl-34635641

The fatality rate of non-small cell lung cancer (NSCLC) has been high due to the existence of cancer stem cells (CSCs). Non-muscle myosin heavy chain 9 (MYH9) can promote the progression of various tumors, but its effect on the stem cell-like characteristics of lung cancer cells (LCCs) has not been clarified. Our research found that the stemness characteristics of LCCs were significantly enhanced by the overexpression of MYH9, and the knockout of MYH9 had the opposite effects. The in vivo with inhibitor blebbistatin further confirmed the effect of MYH9 on the stem cell-like behavior of LCCs. Furthermore, western blotting showed that the expression level of CSCs markers (CD44, SOX2, Nanog, CD133, and OCT4) was also regulated by MYH9. Mechanistic studies have shown that MYH9 regulates stem cell-like features of LCCs by regulating the mTOR signaling pathway, which was supported by sphere formation experiments after LCCs were treated with inhibitors Rapamycin and CHIR-99021. Importantly, high expression of MYH9 in lung cancer is positively correlated with poor clinical prognosis and is an independent risk factor for patients with NSCLC.

10.
PeerJ ; 9: e12115, 2021.
Article En | MEDLINE | ID: mdl-34557357

Osteosarcoma (OS) is a primary malignant tumor of bone occurring in young adults. OS stem cells (OSCs) play an important role in the occurrence, growth, metastasis, drug resistance and recurrence of OS. CD133 is an integral membrane glycoprotein, which has been identified as an OSC marker. However, the mechanisms of metastasis, chemoresistance, and progression in CD133(+) OSCs need to be further explored. In this study, we aim to explore differences in miRNA levels between CD133(+) and CD133(-) cells from the MG-63 cell line. We found 20 differentially expressed miRNAs (DEmiRNAs) (16 upregulated and 4 downregulated) in CD133(+) cells compared with CD133(-) cells. Hsa-miR-4485-3p, hsa-miR-4284 and hsa-miR-3656 were the top three upregulated DEmiRNAs, while hsa-miR-487b-3p, hsa-miR-493-5p and hsa-miR-431-5p were the top three downregulated DEmiRNAs. In addition, RT-PCR analysis confirmed that the expression levels of hsa-miR-4284, hsa-miR-4485-3p and hsa-miR-3656 were significantly increased, while the expression levels of hsa-miR-487b-3p, hsa-miR-493-5p, and hsa-miR-431-5p were significantly decreased in CD133(+) cells compared with CD133(-) cells. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that predicted or validated target genes for all 20 DEmiRNAs or the selected 6 DEmiRNAs participated in the "PI3K-Akt signaling pathway," "Wnt signaling pathway," "Rap1 signaling pathway," "Cell cycle" and "MAPK signaling pathway". Among the selected six DEmiRNAs, miR-4284 was especially interesting. MiR-4284 knockdown significantly reduced the sphere forming capacity of CD133(+) OS cells. The number of invasive CD133(+) OS cells was markedly decreased after miR-4284 knockdown. In addition, miR-4284 knockdown increased the p-ß-catenin levels in CD133(+) OS cells. In conclusion, RNA-seq analysis revealed DEmiRNAs between CD133(+) and CD133(-) cells. MiRNAs might play significant roles in the function of OSCs and could serve as targets for OS treatment. MiR-4284 prompted the self-renewal and invasion of OSCs. The function of miR-4284 might be associated with the Wnt signaling pathway.

11.
Front Cell Dev Biol ; 9: 659260, 2021.
Article En | MEDLINE | ID: mdl-34164393

BACKGROUND: Focusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis. METHODS: Bioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo. RESULTS: BCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism. CONCLUSION: BCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.

12.
Cancer Metab ; 9(1): 23, 2021 May 12.
Article En | MEDLINE | ID: mdl-33980323

BACKGROUND: Cancer cell is generally characterized by enhanced glycolysis. Inflammasome activation is interaction with glycolysis. The concentration of lipopolysaccharide (LPS), a classic inflammasome activator, is significantly higher in colorectal cancer tissue than in normal intestinal mucosa. However, the mechanism of LPS on glycolysis and metastasis has not been fully elucidated. This study aimed to investigate the roles of LPS on inflammasome activation, glycolysis, and metastasis, and unravel metformin's potential in treatment of CRC. METHODS: We detected inflammasome activation and cell motility following LPS exposure in CRC cell lines. Glycolysis analysis was performed, and the key glycolytic rate-limiting enzymes were detected. Dual-luciferase reporter gene assay, co-immunoprecipitation, chromatin immunoprecipitation (ChIP) analysis, and ChIP-reChIP assay were performed to identify the specific mechanisms of LPS on glycolysis. Mouse metastasis models were used to determine the effects of LPS and metformin on metastasis. Correlation analysis of the expression of various molecules was performed in 635 CRC samples from The Cancer Genome Atlas and 83 CRC samples from our lab. RESULTS: LPS activates caspase-1 through NF-κB and upregulates the expression of Snail and HK3 depending on caspase-1 activation. LPS potentiates migration and invasion depending on accelerated glycolysis, which could be reversed by knockdown of glycolytic rate-limiting enzyme HK3. Nuclear Snail is upregulated by NF-κB under LPS treatment and then forms a complex with NF-κB, then directly binds to the HK3 promoter region to upregulate the expression of HK3. Metformin suppresses the NF-κB/Snail/HK3 signaling axis that is activated by LPS and then inhibits LPS-induced metastasis. In vivo, LPS-treated cells form more metastasis in the lungs of mice, and metformin completely reverses this effect of LPS. CONCLUSION: LPS activates inflammasomes in cancer cells through NF-κB and promotes metastasis through glycolysis enhanced by the NF-κB/Snail/HK3 signaling pathway in CRC. Metformin could prevent this effect of LPS.

13.
Life Sci ; 276: 119405, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33798550

AIMS: Gastric cancer stem cells (GCSCs) have been used as a therapeutic target. This study aims to estimate the role of miR-98-5p (termed miR-98) in the development of GCSCs. MAIN METHODS: The expression of miR-98 in CD44+ GCSCs was verified by RT-PCR. The miR-98 was overexpressed in CD44+ GCSCs by Lentivirus. The ability of self-renewal, invasion, chemoresistance and tumorigenicity was detected in vitro or in vivo after overexpression of miR-98. The target genes of miR-98 were predicted and verified by luciferase reporter assays. The effects miR-98/BCAT1 signaling on the chemoresistance and tumorigenicity of CD44+ GCSCs were investigated in a xenograft model by rescue experiments. KEY FINDINGS: We have shown that miR-98 was decreased in CD44+ GCSCs. The overexpression of miR-98 could inhibit the expression of stem-related genes and the ability of self-renewal, invasion, and tumorigenicity of GCSCs. Also, we found that miR-98 overexpression enhances the sensitivity to cisplatin treatment in vitro. Using a xenograft model, we showed that miR-98 overexpression reversed paclitaxel resistance to CD44+ GCSCs. Finally, we found that branched-chain aminotransferases 1 (BCAT1) is a target gene of miR-98. Overexpressed BCAT1 reversed xenograft tumor formation ability and attenuated the paclitaxel chemosensitivity induced by miR-98 downregulation. Furthermore, BCAT1 restoration affected the expression of invasion and drug resistance-related genes. SIGNIFICANCE: This study revealed miR-98 inhibits gastric cancer cell stemness and chemoresistance by targeting BCAT1, suggesting that this miR-98/BCAT1 axis represents a potential therapeutic target in gastric cancer.


Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplastic Stem Cells/drug effects , Stomach Neoplasms/drug therapy , Transaminases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Cisplatin/pharmacology , Humans , Hyaluronan Receptors/metabolism , Male , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transaminases/genetics , Transaminases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Int J Med Sci ; 18(8): 1753-1759, 2021.
Article En | MEDLINE | ID: mdl-33746592

Background: Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking effective treatment options, and p53 is the most frequently mutated or deleted gene. Carboxypeptidase A4 (CPA4) is an extracellular metallocarboxypeptidase, which was closely associated with aggressiveness. Although a recent study indicated that CPA4 could induce epithelial­mesenchymal transition in breast cancer cells, no studies investigated its stemness-related function and the correlation between CPA4 and p53 in TNBC. In this study, we aimed to investigate the CPA4 levels in breast cancer tissues and analyze its association with p53, and study its roles in cancer stemness maintenance. Methods: CPA4 mRNA level and its prognostic value were analyzed by using online database UALCAN (http://ualcan.path.uab.edu) and Kaplan-Meier plotter (www.kmplot.com), respectively. The expression of CPA4, p53 and ALDH1A1 in breast cancer and adjacent normal tissues were evaluated by IHC using the corresponding primary antibodies on a commercial tissue array (Shanghai Biochip Co., Ltd., Shanghai, China). siRNA knockdown was used to study the function of proliferation, colony formation assay and sphere formation in serum-free medium. Results: Analysis of the UALCAN datasets identified that CPA4 mRNA levels were elevated in TNBC, especially in the TP53-mutant subgroup. Furthermore, high levels of CPA4 mRNA were significantly associated with unfavourable overall survival OS in breast cancer patients. Immunohistochemistical analysis demonstrated that CPA4 levels were elevated in 32.1% of breast cancer samples (45/140), and the positive rates of ALDH1A1 and p53 in the breast cancer tissues were 25% (35/140) and 50% (70/140), respectively. Statistical analysis revealed high levels of CPA4 was significantly associated with TNBC phenotype. Correlation analysis indicated that CPA4 over-expression was positively associated with ALDH1A1 (P<0.01) and negatively correlated with p53 (P<0.05). In Kaplan-Meier survival analysis, either high CPA4 or ALDH1A1 levels was significantly correlated with poor survival in breast cancer patients. Functional studies demonstrated that down-regulation of CPA4 significantly inhibited TNBC cell proliferation, colony-formation assays in soft agar and sphere formation in serum-free medium. Conclusion: This study demonstrated for the first time that CPA4 was negatively correlates with p53 expression and inhibition of CPA4 could reduce the number of breast cancer cells with stemness property. It might be a potential target for the TNBC treatment.


Biomarkers, Tumor/metabolism , Carboxypeptidases A/metabolism , Neoplastic Stem Cells/pathology , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Adult , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Carboxypeptidases A/analysis , Carboxypeptidases A/genetics , Cell Line, Tumor , Cell Self Renewal , Datasets as Topic , Female , Follow-Up Studies , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Middle Aged , Prognosis , Triple Negative Breast Neoplasms/mortality , Tumor Suppressor Protein p53/analysis
15.
Stem Cell Res Ther ; 12(1): 119, 2021 02 12.
Article En | MEDLINE | ID: mdl-33579362

BACKGROUND: Tumor-associated antigens (TAAs) can be targeted in cancer therapy. We previously identified a monoclonal antibody (mAb) 12C7, which presented anti-tumor activity in lung cancer stem cells (LCSCs). Here, we aimed to identify the target antigen for 12C7 and confirm its role in LCSCs. METHODS: Immunofluorescence was used for antigen localization. After targeted antigen purification by electrophoresis and immunoblot, the antigen was identified by LC-MALDI-TOF/TOF mass spectrometry, immunofluorescence, and immunoprecipitation. The overexpression or silence of ENO1 was induced by lentiviral transduction. Self-renewal, growth, and invasion of LCSCs were evaluated by sphere formation, colony formation, and invasion assay, respectively. High-throughput transcriptome sequencing (RNA-seq) and bioinformatics analysis were performed to analyze downstream targets and pathways of targeted antigen. RESULTS: Targeted antigen showed a surface antigen expression pattern, and the 43-55 kDa protein band was identified as α-enolase (ENO1). Self-renewal, growth, and invasion abilities of LCSCs were remarkably inhibited by ENO1 downregulation, while enhanced by ENO1 upregulation. RNA-seq and bioinformatics analysis eventually screened 4 self-renewal-related and 6 invasion-related differentially expressed genes. GSEA analysis and qRT-PCR verified that ENO1 regulated self-renewal, invasion-related genes, and pathways. KEGG pathway analysis and immunoblot demonstrated that ENO1 inactivated AMPK pathway and activated mTOR pathway in LCSCs. CONCLUSIONS: ENO1 is identified as a targeted antigen of mAb 12C7 and plays a pivotal role in facilitating self-renewal, growth, and invasion of LCSCs. These findings provide a potent therapeutic target for the stem cell therapy for lung cancer and have potential to improve the anti-tumor activity of 12C7.


Neoplasms , Phosphopyruvate Hydratase , AMP-Activated Protein Kinases , Antibodies, Monoclonal , Biomarkers, Tumor , Cell Line, Tumor , Lung , Neoplastic Stem Cells , Phenotype , Phosphopyruvate Hydratase/genetics , TOR Serine-Threonine Kinases/genetics
16.
Article Zh | WPRIM | ID: wpr-886471

@#[摘 要] 具有独特的分子表达、表面标志物、干性相关信号通路和代谢模式等方面特征的肿瘤干细胞(cancer stem cell, CSC)因其具有高致瘤、高转移、高治疗抵抗能力,可能是多种类型恶性肿瘤生长、转移、治疗抵抗的关键因素,也是肿瘤发生和复发的重要根源。正常干细胞在产生了第一个致癌突变之后将逐步发展成为癌前干细胞和CSC,随后在突变和微环境的共同作用下进一步积累突变增加异质性,并与CSC可塑性转变交织在一起推动肿瘤的发生和进展,促进肿瘤的复发、转移及治疗抵抗。为了更好地治疗肿瘤,现已研发了多种类型的靶向CSC的治疗策略,包括靶向CSC的细胞表面标志物、信号转导途径、微环境、代谢模式等,以及促CSC分化、靶向CSC的免疫治疗等其他策略。多个靶向CSC治疗肿瘤的新药在临床试验中已经展现出良好的治疗效果,然而,也有一些抗肿瘤新药的失败为未来研发提供了值得注意的教训。未来肿瘤治疗中,特异地靶向患者肿瘤中所有异质性的CSC,并同时清除癌前干细胞和子代肿瘤细胞,将会更好地抑制肿瘤生长、转移和复发,从而为治愈肿瘤带来新的希望。

17.
Article Zh | WPRIM | ID: wpr-876050

@#[Abstract] Objective: To explore the effect of anti-ENO1 (enolase 1) antibody and metformin (MET) treatment on the proliferation, migration, invasion and stemness of cetuximab (CTX) -resistant non-small cell lung cancer (NSCLC) cells through targeting cancer stem cells and the possible mechanism. Methods: 10 mmol/L MET combined with 40 μg/ml anti-ENO1 antibody was used to treat CTX(35 µg/ml)-resistant NSCLC A549 cells for 4 d, and the effects of combined treatment on A549 cells were detected with proliferation experiment, colony formation assay, migration and invasion experiments and methylcellulose ball formation experiment. In the meanwhile, FCM was used to detect the effects of CTX, MET and anti-ENO1 antibody single-drug treatment as well as the three-drug combination treatment on ALDH+ and CD44+ lung cancer stem cell subsets. Results: CTX combined with MET and anti-ENO1 antibody treatment significantly inhibited the proliferation, migration, invasion and self-renewal capacity of A549 cells. FCM analysis found that MET could significantly inhibit ALDH+ stem cell subpopulations, while anti-ENO1 antibody could significantly inhibit CD44+ stem cell subpopulations, and the three-drug combination treatment could simultaneously suppress ALDH+ and CD44+ stem cell subpopulations. Conclusion: MET and anti-ENO1 antibody respectively target ALDH+ and CD44+ cancer stem cell subsets, and the combined treatment of MET and anti-ENO1 antibody can effectively reverse the resistance of A549 cells to CTX, and thereby more effectively inhibiting stemness, proliferation, metastasis of A549 cells and tumor recurrence.

18.
Cell Death Dis ; 11(10): 870, 2020 10 16.
Article En | MEDLINE | ID: mdl-33067426

Recent studies have demonstrated that gastric cancer stem cells (CSCs) are a rare sub-group of gastric cancer (GC) cells and have an important role in promoting the tumor growth and progression of GC. In the present study, we demonstrated that the glycolytic enzyme Enolase 1 (ENO1) was involved in the regulation of the stem cell-like characteristics of GC cells, as compared to the parental cell lines PAMC-82 and SNU16, the expression of ENO1 in spheroids markedly increased. We then observed that ENO1 could enhance stem cell-like characteristics, including self-renewal capacity, cell invasion and migration, chemoresistance, and even the tumorigenicity of GC cells. ENO1 is known as an enzyme that is involved in glycolysis, but our results showed that ENO1 could markedly promote the glycolytic activity of cells. Furthermore, inhibiting glycolysis activity using 2-deoxy-D-glucose treatment significantly reduced the stemness of GC cells. Therefore, ENO1 could improve the stemness of CSCs by enhancing the cells' glycolysis. Subsequently, to further confirm our results, we found that the inhibition of ENO1 using AP-III-a4 (ENOblock) could reduce the stemness of GC cells to a similar extent as the knockdown of ENO1 by shRNA. Finally, increased expression of ENO1 was related to poor prognosis in GC patients. Taken together, our results demonstrated that ENO1 is a significant biomarker associated with the stemness of GC cells.


Biomarkers, Tumor/metabolism , DNA-Binding Proteins/metabolism , Glycolysis/physiology , Neoplastic Stem Cells/metabolism , Phosphopyruvate Hydratase/metabolism , Stomach Neoplasms/metabolism , Tumor Suppressor Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Gene Expression Regulation, Neoplastic/genetics , Glycolysis/genetics , Humans , Phosphopyruvate Hydratase/genetics , Stomach/pathology , Stomach Neoplasms/pathology
19.
Oncol Rep ; 44(1): 313-324, 2020 07.
Article En | MEDLINE | ID: mdl-32377704

Multiple drug resistance is a major obstacle to the successful treatment of osteosarcoma (OS). Recent studies have demonstrated that a subset of cells, referred to as OS stem cells (OSCs), play a crucial role in the acquisition of multiple drug resistance. Therefore, an improved understanding of OS biology and pathogenesis is required to advance the development of targeted therapies aimed at eradicating this particular subset of cells in order to reverse acquired chemoresistance in OS. The aim of the present study was to assess the anti­OSC effects of 17­AAG and determine the underlying molecular mechanism. Heat shock protein 90 expression was found to be increased in sarcosphere cells and was positively associated with cancer stem cell characteristics. In addition, 17­AAG was able to suppress the stem cell­like phenotype of OS cells. Mechanistically, 17­AAG inhibited OSC­like properties and chemoresistance through glycogen synthase kinase (GSK) 3ß inactivation­mediated repression of the Hedgehog signaling pathway. The findings of the present study provided comprehensive evidence for the inhibition of OSC properties and chemoresistance by 17­AAG through repression of the GSK3ß/Hedgehog signaling pathway, suggesting that 17­AAG may be a promising therapeutic agent for targeting OSCs.


Benzoquinones/pharmacology , Bone Neoplasms/metabolism , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Lactams, Macrocyclic/pharmacology , Osteosarcoma/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , HSP90 Heat-Shock Proteins/metabolism , Hedgehog Proteins/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Signal Transduction/drug effects
20.
Article Zh | WPRIM | ID: wpr-829319

@#[Abstract] Objective: To investigate the effect of 18H12, a functional monoclonal antibody that can target gastric cancer stem cells, on the self-renewal and invasion ability of gastric cancer cells. Methods: The gastric cancer cell line PAMC-82 was used as cell model, the expression of ENO1 (enolase-1) on the membrane surface of its parental cells and enriched stem cells by sphere culture was detected by Flow cytometry. Flow cytometry was used to separate ENO1+ cells and ENO1- cells to detect their self-renewal ability and invasion ability. With the commercial ENO1 antigen and antibody as the samples, CoIP (co-immunoprecipitation) was used to verify whether 18H12 antibody targeting ENO1 could able to accurately recognize ENO1. After being treated with 18H12 for 12 h, 24 h and 48 h, the selfrenewal and invasion ability of PAMC-82 cells were detected by methylcellulose pelletization experiment and Transwell chamber assay, respectively. Results: Flow cytometry showed that the expression of ENO1 on the membrane surface of PAMC-82 sphere cells was significantly higher than that of its parental cells (P<0.01), so ENO1 could be a potential target for targeting gastric cancer stem cells. The self-renewal ability and invasion ability of the sorted ENO1+ cells were significantly stronger than those of the ENO1- cells and the parental cells (P<0.05 or P<0.01). 18H12 antibody could accurately recognize ENO1, which was consistent with the commercial antibody recognition band. 18H12 could significantly inhibit self-renewal ability and invasion ability of PAMC-82 cells (P<0.01). Conclusion: Monoclonal antibody 18H12 can significantly inhibit the self-renewal and invasion of gastric cancer stem cells and is expected to be a candidate antibody drug targeting gastric cancer stem cells.

...