Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Biol Macromol ; 269(Pt 2): 132184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723814

RESUMEN

Phase separation and aggregation behaviour of triton X-100 (TX-100) and bovine serum albumin (BSA) mixture were investigated using cloud point and UV-visible spectroscopic techniques. The effects of various hydrotropes (HYTs) - namely, sodium salicylate (SS), sodium benzoate (SB), glycerol (Glyc), and 4-aminobenzoic acid (4-ABA) - on the cloud point (CP) of TX-100 + BSA were determined. The obtained CP values for the mixed system in the presence of HYTs followed the order: The measured critical micellization concentration (CMC) values of the TX-100 + BSA mixture were found to be significantly altered with varying amounts of BSA. The calculated free energy of clouding and micellization indicated the non-spontaneous nature of the phase transition and the spontaneous association of the TX-100 + BSA mixture. The non-spontaneity of phase separation decreased with increasing concentrations of HYTs. The enumerated values of ∆Hco and ∆Sco were consistently recorded as negative and positive magnitudes, respectively, in all aqueous HYTs media. The clouding process occurred due to a combination of hydrophobic and electrostatic interactions. The binding constant of the mixed system was determined employing the UV-vis spectroscopic method using the Benesi-Hildebrand equation.


Asunto(s)
Octoxinol , Albúmina Sérica Bovina , Espectrofotometría Ultravioleta , Albúmina Sérica Bovina/química , Octoxinol/química , Animales , Bovinos , Interacciones Hidrofóbicas e Hidrofílicas , Agregado de Proteínas , Micelas , Transición de Fase , Tensoactivos/química , Separación de Fases
2.
Int J Biol Macromol ; 253(Pt 4): 127101, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37769770

RESUMEN

It is important for biological, pharmaceutical, and cosmetic industries to understand how proteins and surfactants interact. Herein, the interaction of bovine serum albumin (BSA) with tetradecyltrimethylammonium bromide (TTAB) in different inorganic salts (KCl, K2SO4, K3PO4.H2O) has been explored through the conductivity measurement method at different temperatures (300.55 to 325.55 K) with a specific salt concentration and at a fixed temperature (310.55 K) using different salts concentrations. The extent of micelle ionization (α) and different thermodynamic parameters associated with BSA and TTAB mixtures in salt solutions were calculated. Evaluation of the magnitudes of ∆Hm0 and ∆Sm0 showed that the association was exothermic and primarily an enthalpy-operated process in all cases at lower contents of BSA, but the system became endothermic, and entropy driven in the presence of K3PO4.H2O at a relatively higher concentration of BSA. The enthalpy-entropy compensation variables were determined, which explained the types and nature of interactions between TTAB and BSA in salt media. Molecular docking analysis revealed that the main stabilizing factors in the BSA-TTAB complex are electrostatic and hydrophobic interactions. These findings aligned with the significant results obtained from the conductometry method regarding the nature and characteristics of binding forces observed between BSA and TTAB.


Asunto(s)
Sales (Química) , Albúmina Sérica Bovina , Temperatura , Albúmina Sérica Bovina/química , Unión Proteica , Simulación del Acoplamiento Molecular , Termodinámica , Electrólitos , Espectrometría de Fluorescencia/métodos , Sitios de Unión
3.
RSC Adv ; 13(30): 20709-20722, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37441036

RESUMEN

The investigation of the micellization of a mixture of cetylpyridinium bromide (CPB) and levofloxacin hemihydrate (LFH) was carried out by a conductivity technique in aqueous and aq. additive mixtures, including NaCl, NaOAc, NaBenz, 4-ABA, and urea. The aggregation behavior of the CPB + LFH mixture was studied considering the variation in additive contents and the change in experimental temperature. The micelle formation of the CPB + LFH mixture was examined from the breakpoint observed in the specific conductivity versus surfactant concentration plots. Different micellar characteristics, such as the critical micelle concentration (CMC) and the extent of counter ion bound (ß), were evaluated for the CPB + LFH mixture. The CMC and ß were found to undergo a change with the types of solvents, composition of solvents, and working temperatures. The ΔG0m values of the CPB + LFH system in aqueous and aq. additive solutions were found to be negative, which denotes a spontaneous aggregation phenomenon of the CPB + LFH system. The changes in ΔH0m and ΔS0m for the CPB + LFH mixture were also detected with the alteration in the solvent nature and solution temperature. The ΔH0m and ΔS0m values obtained for the association of the CPB + LFH mixture reveal that the characteristic interaction forces may possibly be ion-dipole, dipole-dipole, and hydrophobic between CPB and LFH. The thermodynamics of transfer and ΔH0m-ΔS0m compensation variables were also determined. All the parameters computed in the present investigation are illustrated with proper logic.

4.
Int J Biol Macromol ; 246: 125592, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385321

RESUMEN

Interactions between bovine serum albumin (BSA) and cetyltrimethylammonium chloride (CTAC) were studied utilizing conductivity approach. The critical micelle concentration (CMC), micelle ionization (α) along with counter ion binding (ß) of CTAC micellization in aqueous solutions of BSA/BSA + hydrotropes (HYTs) have been computed at 298.15-323.15 K. Increase in temperatures of CTAC + BSA/BSA mixtures in HYTs resulted in elevation of CMC due to the association of chemical species in the respective systems which reduced the degree of micelle formation. CTAC + BSA consumed greater extents of surfactant species to generate micelle formation in the corresponding systems at higher temperatures. Standard free energy change associated with the assembling processes of CTAC in BSA was found negative suggesting the spontaneous nature of micellization processes. Magnitudes of ∆Hm0 and ∆Sm0 obtained from CTAC + BSA aggregation revealed the existence of H-bonding, electrostatic interactions along with hydrophobic forces among the constituents employed in the respective systems. ∆Gm0 The estimated thermodynamic parameters of transfer (free energy (∆Gm,tr0), enthalpy (∆Hm,tr0) and entropy (∆Sm,tr0)) and compensation variables (∆Hm0,∗ and Tc) provided significant insights on the association behaviors of the CTAC + BSA system in the selected HYTs solutions.

5.
Chem Zvesti ; : 1-14, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37362789

RESUMEN

Herein, interactions between cetylpyridinium chloride (CPC) and ceftriaxone sodium (CTS) were investigated applying conductivity technique. Impacts of the nature of additives (e.g. electrolytes or hydrotrope (HDT)), change of temperatures (from 298.15 to 323.15 K), and concentration variation of CTS/additives were assessed on the micellization of CPC + CTS mixture. The conductometric analysis of critical micelle concentration (CMC) with respect to the concentration reveals that the CMC values were increased with the increase in CTS concentration. In terms of using different mediums, CMC did not differ much with the increase in electrolyte salt (NaCl, Na2SO4) concentration, but increased significantly with the rise of HDT (NaBenz) amount. In the presence of electrolyte, CMC showed a gentle increment with temperature, while the HDT showed the opposite trend. Obtained result was further correlated with conventional thermodynamic relationship, where standard Gibb's free energy change (ΔGmo), change of enthalpy (ΔHmo), and change of entropy (ΔSmo) were utilized to investigate. The ΔGmo values were negative for all the mixed systems studied indicating that the micellization process was spontaneous. Finally, the stability of micellization was studied by estimating the intrinsic enthalpy gain (ΔHmo,∗) and compensation temperature (Tc). Here, CPC + CTS mixed system showed more stability in Na2SO4 medium than the NaCl, while in NaBenz exhibited the lowest stability.

6.
Int J Biol Macromol ; 228: 445-452, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529211

RESUMEN

Herein, we have investigated the association behavior of bovine serum albumin (BSA) and cetyltrimethylammonium bromide (CTAB) using the conductivity method in H2O and H2O + organic mixed solvents at different temperatures. The association phenomenon was detected from the deviation of the conductivity changes with enhancing the surfactant concentration and changes of numerous physico-chemical properties, such as CMC, α, ß and thermodynamic variables (∆G0m, ∆H0m and ∆S0m). The values of CMC for the CTAB + BSA system in 10 % (v/v) solvents follow the trend: CMCwater < CMCwater+DMSO < CMCwater+AN < CMCwater+DX < CMCwater+DMF. The interaction of BSA with CTAB is notably influenced due to a change of temperature and extent of hydration of BSA and surfactant. The obtained values of -∆G0m manifest that the association of BSA and CTAB mixture is a spontaneous process, while the values of -∆G0m in presence of 10 % (v/v) aq. organic solvents come out in the given sequence: -∆Gmo (H2O + DMSO) > ∆Gmo (H2O + DMF) > -∆Gmo (H2O + DX) > -∆Gmo (H2O + AN). The H-bonding, ion-dipole, along with the hydrophobic interactions, are believed to be the binding interactions between BSA and CTAB in the study media.


Asunto(s)
Dimetilsulfóxido , Albúmina Sérica Bovina , Cetrimonio , Albúmina Sérica Bovina/química , Tensoactivos/química , Solventes , Agua/química
7.
Int J Biol Macromol ; 222(Pt A): 181-187, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150566

RESUMEN

Clouding behavior and thermodynamic properties for the TX 100 + BSA mixture were investigated in aqueous and aq. alcoholic media. In an aqueous environment, the values of cloud point (CP), at which a clear solution becomes cloudy, for TX 100 decreases with augmentation of the concentration of BSA. The reverse result was obtained in the aq. alcoholic media. In this study, we have used ethanol (EtOH), 1-propanol (1-PrOH), and 2-butanol (2-BuOH) as alcohols. The changes of CP values in alcoholic media have been obtained in the following order: CPH2O+EtOH > CPH2O+2-BuOH > CPH2O+1-PrOH. The standard free energy (∆Gco), standard enthalpy (∆Hco), and standard entropy (∆Sco) changes of clouding were derived at CP. The ΔGc0 values of TX 100 + BSA decreases in the aqueous and alcoholic media with increasing the concentration of BSA and alcohol. This process becomes endothermic in the aq. alcoholic media. Different thermodynamic properties of transfer and entropy-enthalpy compensation parameters for the phase partitioning of the TX 100 + BSA mixture have been calculated and assessed properly.


Asunto(s)
Polietilenglicoles , Agua , Octoxinol/química , Agua/química , Termodinámica , Alcoholes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA