Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
J Sci Food Agric ; 104(7): 3823-3833, 2024 May.
Article En | MEDLINE | ID: mdl-37971887

The intensified attention to health, the growth of an elderly population, the changing lifestyles, and the medical discoveries have increased demand for natural and nutrient-rich foods, shaping the popularity of microalgae products. Microalgae thanks to their metabolic versatility represent a promising solution for a 'green' economy, exploiting non-arable land, non-potable water, capturing carbon dioxide (CO2) and solar energy. The interest in microalgae is justified by their high content of bioactive molecules, such as amino acids, peptides, proteins, carbohydrates, polysaccharides, polyunsaturated fatty acids (as ω-3 fatty acids), pigments (as ß-carotene, astaxanthin, fucoxanthin, phycocyanin, zeaxanthin and lutein), or mineral elements. Such molecules are of interest for human and animal nutrition, cosmetic and biofuel production, for which microalgae are potential renewable sources. Microalgae, also, represent effective biological systems for treating a variety of wastewaters and can be used as a CO2 mitigation approach, helping to combat greenhouse gases and global warming emergencies. Recently a growing interest has focused on extremophilic microalgae species, which are easier to cultivate axenically and represent good candidates for open pond cultivation. In some cases, the cultivation and/or harvesting systems are still immature, but novel techniques appear as promising solutions to overcome such barriers. This review provides an overview on the actual microalgae cultivation systems and the current state of their biotechnological applications to obtain high value compounds or ingredients. Moreover, potential and future research opportunities for environment, human and animal benefits are pointed out. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Carbon Dioxide , Microalgae , Aged , Humans , Animals , Carbon Dioxide/metabolism , Microalgae/chemistry , Biotechnology , beta Carotene/metabolism , Lutein/metabolism
2.
Food Res Int ; 174(Pt 1): 113510, 2023 12.
Article En | MEDLINE | ID: mdl-37986418

In this study, the pâté olive cake (POC), a by-product of the olive oil industry, was subjected to fermentation in a bioreactor using three microbial strains, Lactiplantibacillus plantarum, Wickerhamomyces anomalus and Candida boidinii, previously isolated from fermented table olive brines. Chemical, microbiological and molecular analyses were carried out at the beginning and at the end of fermentation. The lowest pH value (4.09) was reached after 10 days in sample inoculated with C. boidinii. Microbiological analyses exhibited the dominance of yeasts throughout the whole process (from 5.5 to 7.80 Log10 CFU/g), as confirmed by PCR-DGGE analysis. The microbial cultures affected both phenolic and volatile organic compound profiles. Moreover, the POC samples treated with different microbial strains were investigated for biological assays. The sample fermented with W. anomalus showed the greatest diffusion speed of transepithelial transport through Caco-2 cell, the highest inhibitory activity towards the tested cyclooxygenases and the highest antioxidant activity.


Olea , Humans , Olea/chemistry , Fermentation , Caco-2 Cells , Food Microbiology , Yeasts
3.
Microorganisms ; 11(5)2023 May 19.
Article En | MEDLINE | ID: mdl-37317312

Wine represents a complex matrix in which microbial interactions can strongly impact the quality of the final product. Numerous studies have focused on optimizing microbial approaches for addressing new challenges to enhance quality, typicity, and food safety. However, few studies have investigated yeasts of different genera as resources for obtaining wines with new, specific traits. Currently, based on the continuous changes in consumer demand, yeast selection within conventional Saccharomyces cerevisiae and unconventional non-Saccharomyces yeasts represents a suitable opportunity. Wine fermentation driven by indigenous yeasts, in the various stages, has achieved promising results in producing wines with desired characteristics, such as a reduced content of ethanol, SO2, and toxins, as well as an increased aromatic complexity. Therefore, the increasing interest in organic, biodynamic, natural, or clean wine represents a new challenge for the wine sector. This review aims at exploring the main features of different oenological yeasts to obtain wines reflecting the needs of current consumers in a sustainability context, providing an overview, and pointing out the role of microorganisms as valuable sources and biological approaches to explore potential and future research opportunities.

4.
Front Microbiol ; 14: 1112328, 2023.
Article En | MEDLINE | ID: mdl-36726372

Introduction: With the purpose to evaluate the effects of dietary olive cake, a source of bioactive phenolic compounds, as feed supplementation of lactating dairy cows on fatty acid composition, volatile organic compounds, and microbiological profiles of Provola cheese, we performed a two-arm study where control and experimental administered cows derived dairy have been compared. Methods: Our panel of analyses include metabolomics, physicochemical detected variables, culture dependent and independent analyses, and a stringent statistical approach aimful at disclosing only statistically significant results. Results and discussion: Looking at the physicochemical variable's profiles, a higher content of unsaturated fatty acids, polyunsaturated fatty acid, and conjugated linoleic acids as well of proteins were observed in experimental cheese samples, indicating the beneficial effect of dietary supplementation. Furthermore, based on volatilome composition, a clear cluster separation between control and experimental cheeses was obtained, mainly related to terpenes degradation, able of influencing their aroma and taste. Microbiological results showed a decrease of some spoilage related microbial groups in experimental cheeses, probably due to the inhibitory effect exerted by polyphenols compounds, that contrarily did not affect the core taxa of all cheese samples. This paper confirmed the promising utilization of olive by-product in farming practices to obtain more sustainable and safe dairy food products with lower environmental impact, mainly in Sicily and Mediterranean area, where waste disposal poses serious environmental and economic problems.

5.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Article En | MEDLINE | ID: mdl-36829881

Olive mill wastewater, a by-product of the olive oil industry, represents an important resource, rich in bioactive compounds with antioxidant activity. In this study, two strategies to concentrate the bioactive components were used: the tangential membrane filtration (ultrafiltration and reverse osmosis) and the selective resin extraction. The concentrates were evaluated for physico-chemical characteristics and antioxidant activity. Furthermore, the antimicrobial activity and the effect on the mitochondrial voltage-dependent anion selective channel 1 were evaluated. The chemical results highlighted that the highest concentration of hydroxytyrosol (as 7204 mg/L) was revealed in the sample obtained by inverse osmosis while the highest concentration of oleuropein (10005 mg/L) was detected in the sample obtained by resin extraction. The latter sample exhibited the highest antimicrobial effects against Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Both samples exhibited a high impact on the electrophysiological parameters of VDAC1 activity. These results showed that both valorization techniques, which can be reproduced at industrial scale, provided phenolic concentrates with antioxidant and antimicrobial activity useful for different future perspectives.

6.
Molecules ; 28(2)2023 Jan 08.
Article En | MEDLINE | ID: mdl-36677704

Olive mill wastewater (OMWW) represents a by-product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce environmental impact. The objective of the present study was to obtain a new functional beverage with a health-promoting effect starting from OMWW. Fresh OMWW were pre-treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an increase in the antioxidant and anti-inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage.


Olea , Wastewater , Humans , Olea/chemistry , Caco-2 Cells , Phenols/analysis , Environment , Industrial Waste/analysis , Olive Oil
7.
Front Microbiol ; 13: 1000822, 2022.
Article En | MEDLINE | ID: mdl-36419418

Gardnerella species play a key role in the development and recurrence of Bacterial Vaginosis (BV), a common imbalance of the vaginal microbiota. Because of the high rates of BV recurrence reported after treatment with standard of care antibiotics, as well as the emergence of antibiotic-resistant BV, the development of alternative treatment approaches is needed. Bovine lactoferrin, a well studied iron-binding glycoprotein with selective antimicrobial activity, may ameliorate vaginal dysbiosis either alone or in combination with antibiotics. The present study evaluated the antimicrobial resistance/susceptibility profile of seventy-one presumptive G. vaginalis clinical isolates to metronidazole and clindamycin. In addition, the in vitro antimicrobial activity of Metrodora Therapeutics bovine Lactoferrin (MTbLF) against the tested clinical isolates, both alone and in combination with metronidazole and clindamycin, was in depth evaluated using defined-iron culture conditions. All 71 presumptive G. vaginalis clinical isolates exhibited resistance to metronidazole, with MIC values greater than 256 µg/ml. Different susceptibility profiles were detected for clindamycin. In detail, the vast majority of the tested strains (45%), exhibiting MIC lower than 2 µg/ml, were considered sensitive; 18 strains (25%) with MIC higher or equal to 8 µg/ml, were classified as resistant, whereas the remaining 21 (30%) were classified as intermediate. MTbLF was tested in culture medium at different concentrations (32, 16, 8, 4, 2, 1, and 0.5 mg/ml) showing ability to inhibit the growth of the tested presumptive G. vaginalis clinical isolates, including those metronidazole-resistant, in a dose-dependent and not in a strain-dependent manner. MTbLF, at concentrations ranging from 32 to 8 mg/ml, exerted a statistically different antimicrobial activity compared with lower concentrations (4, 2, 1, and 0.5 mg/ml). A synergistic effect between MTbLF (8 and 4 mg/ml) and clindamycin was revealed for all the tested strains. When tested in the absence of other sources of iron, MTbLF did not support the growth of the tested presumptive G. vaginalis clinical isolates. Bovine lactoferrin may be a potential candidate to treat Gardnerella species infection.

8.
Sci Rep ; 12(1): 17322, 2022 10 15.
Article En | MEDLINE | ID: mdl-36243881

Natural whey starters (NWS) are undefined bacterial communities produced daily from whey of the previous cheese-making round, by application of high temperature. As a result, in any dairy plant, NWS are continuously evolving, undefined mixtures of several strains and/or species of lactic acid bacteria, whose composition and performance strongly depend on the selective pressure acting during incubation. While NWS is critical to assure consistency to cheese-making process, little is known about the composition, functional features, and plant-to-plant fluctuations. Here, we integrated 16S rRNA metabarcoding and culture-dependent methods to profile bacterial communities of 10 NWS sampled in the production area of Parmigiano Reggiano cheese. 16S rRNA metabarcoding analysis revealed two main NWS community types, namely NWS type-H and NWS type-D. Lactobacillus helveticus was more abundant in NWS type-H, whilst Lactobacillus delbrueckii/St. thermophilus in NWS type-D, respectively. Based on the prediction of metagenome functions, NWS type-H samples were enriched in functional pathways related to galactose catabolism and purine metabolism, while NWS type-D in pathways related to aromatic and branched chain amino acid biosynthesis, which are flavor compound precursors. Culture-dependent approaches revealed low cultivability of individual colonies as axenic cultures and high genetic diversity in the pool of cultivable survivors. Co-culturing experiments showed that fermentative performance decreases by reducing the bacterial complexity of inoculum, suggesting that biotic interactions and cross-feeding relationships could take place in NWS communities, assuring phenotypic robustness. Even though our data cannot directly predict these ecological interactions, this study provides the basis for experiments targeted at understanding how selective regime affects composition, bacterial interaction, and fermentative performance in NWS.


Food Microbiology , Lactobacillus , Amino Acids, Branched-Chain , Bacteria/genetics , Galactose , Lactobacillus/genetics , Purines , RNA, Ribosomal, 16S/genetics , Whey , Whey Proteins
9.
Food Chem ; 393: 133428, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-35696952

In the present study, a tangential membrane filtration system was applied to recover phenols from olive mill wastewater. The obtained concentrates were characterised for physico-chemical traits, antioxidant activity and antimicrobial effects. Results indicated that the highest concentration of hydroxytyrosol (7203.7 mg/L) was detected in the concentrate obtained by reverse osmosis, which also showed the highest antioxidant and antimicrobial activity. Moreover, the same concentrate was added, at different ratio, up to 4:250 v/v, into a commercial blood orange juice. The fortified juice with the addition of the concentrate, up to 2:250 v/v ratio, did not show off-flavour and off-odour compared to the control. Furthermore, after 60 days of refrigerated storage, the fortified juice exhibited a hydroxytyrosol content still complying with the daily intake recommended by EFSA health claim. The obtained results can be industrially useful in producing orange juice added with a natural antioxidant concentrate as a 'clean label' ingredient.


Anti-Infective Agents , Citrus sinensis , Olea , Antioxidants , Citrus sinensis/chemistry , Olea/chemistry , Olive Oil , Phenols/analysis , Wastewater/chemistry
10.
Microorganisms ; 10(3)2022 Mar 18.
Article En | MEDLINE | ID: mdl-35336230

Bifidobacteria have long been recognized as bacteria with probiotic and therapeutic features. The aim of this work is to characterize the Bifidobacterium asteroides BA15 and BA17 strains, isolated from honeybee gut, to evaluate its safety for human use. An in-depth assessment was carried out on safety properties (antibiotic resistance profiling, ß-hemolytic, DNase and gelatinase activities and virulence factor presence) and other properties (antimicrobial activity, auto-aggregation, co-aggregation and hydrophobicity). Based on phenotypic and genotypic characterization, both strains satisfied all the safety requirements. More specifically, genome analysis showed the absence of genes encoding for glycopeptide (vanA, vanB, vanC-1, vanC-2, vanD, vanE, vanG), resistance to tetracycline (tetM, tetL and tetO) and virulence genes (asa1, gelE, cylA, esp, hyl).

11.
Microorganisms ; 10(2)2022 Jan 21.
Article En | MEDLINE | ID: mdl-35208692

Olive oil extraction generates several by-products that represent an environmental issue, mainly for Mediterranean countries where olive oil is mostly produced. These by-products represent an ecological issue for their phenolic components, such as oleuropein, hydroxytyrosol, and tyrosol. However, olive oil by-products can be treated and properly exploited in different fields for their health-promoting properties, and they represent great potential for the food and beverage, cosmetic, and pharmaceutical industries. Furthermore, recovery and treatment processes can contribute to efficient waste management, which can enhance the sustainability of the olive oil industry, and in turn, lead to relevant economic benefits. The solid waste, i.e., olive pomace, could be considered to be a suitable matrix or primary resource of molecules with high added value due to their high phenolic content. Olive pomace, at different moisture contents, is the main by-product obtained from two- or three-phase extraction systems. A commonly used centrifugal extraction system, i.e., a multiphase decanter (DMF), does not require the addition of water and can generate a new by-product called pâté or olive pomace cake, consisting of moist pulp that is rich in phenols, in particular, secoiridoids, without any trace of kernel. Although several reviews have been published on olive wastes, only a few reviews have specifically focused on the solid by-products. Therefore, the aim of the present review is to provide a comprehensive overview on the current valorization of the main solid olive oil by-products, in particular, olive pomace or pâté olive cake, highlighting their use in different fields, including human nutrition.

12.
Appl Environ Microbiol ; 88(6): e0201921, 2022 03 22.
Article En | MEDLINE | ID: mdl-35170988

This study aims to elucidate the mechanisms responsible for the bioconversion of oleuropein into low-molecular-weight phenolic compounds in two selected Lactiplantibacillus plantarum strains, namely, C11C8 and F3.5, under stress brine conditions and at two different temperatures (16°C and 30°C). For this purpose, we adopted an experimental strategy that combined high-resolution mass spectrometry, in silico functional analysis of glycoside hydrolase family 1 (GH1)-encoding candidate genes, and gene expression studies. The oleuropein hydrolysis products and the underlying enzymatic steps were identified, and a novel putative bgl gene was detected, using seven strains belonging to the same species as controls. According to metabolomic analysis, a new intermediate compound (decarboxymethyl dialdehydic form of oleuropein aglycone) was revealed. In addition, strain C11C8 showed a decrease in the oleuropein content greater than that of the F3.5 strain (30% versus 15%) at a temperature of 16°C. The highest increase in hydroxytyrosol was depicted by strain C11C8 at a temperature of 30°C. PCR assays and sequencing analyses revealed that both strains possess bglH1, bglH2, and bglH3 genes. Furthermore, a reverse transcription-PCR (RT-PCR) assay showed that bglH3 is the only gene transcribed under all tested conditions, while bglH2 is switched off in strain C11C8 grown at cold temperatures, and no transcription was detected for the bglH1 gene. The bglH3 gene encodes a 6-phospho-ß-glucosidase, suggesting how phospho-ß-glucosidase activity could belong to the overall metabolic strategy undertaken by L. plantarum to survive in an environment poor in free sugars, like table olives. IMPORTANCE In the present study, a new candidate gene, bglH3, responsible for the ß-glucosidase-positive phenotype in L. plantarum was detected, providing the basis for the future marker-assisted selection of L. plantarum starter strains with a ß-glucosidase-positive phenotype. Furthermore, the ability of selected strains to hydrolyze oleuropein at low temperatures is important for application as starter cultures on an industrial scale.


Olea , Fermentation , Iridoid Glucosides , Phenylethyl Alcohol/analogs & derivatives
13.
Microorganisms ; 9(3)2021 Mar 02.
Article En | MEDLINE | ID: mdl-33801403

The search for novel brewing strains from non-brewing environments represents an emerging trend to increase genetic and phenotypic diversities in brewing yeast culture collections. Another valuable tool is hybridization, where beneficial traits of individual strains are combined in a single organism. This has been used successfully to create de novo hybrids from parental brewing strains by mimicking natural Saccharomycescerevisiae ale × Saccharomyceseubayanus lager yeast hybrids. Here, we integrated both these approaches to create synthetic hybrids for lager fermentation using parental strains from niches other than beer. Using a phenotype-centered strategy, S. cerevisiae sourdough strains and the S. eubayanus × Saccharomyces uvarum strain NBRC1948 (also referred to as Saccharomyces bayanus) were chosen for their brewing aptitudes. We demonstrated that, in contrast to S. cerevisiae × S. uvarum crosses, hybridization yield was positively affected by time of exposure to starvation, but not by staggered mating. In laboratory-scale fermentation trials at 20 °C, one triple S. cerevisiae × S. eubayanus × S. uvarum hybrid showed a heterotic phenotype compared with the parents. In 2 L wort fermentation trials at 12 °C, this hybrid inherited the ability to consume efficiently maltotriose from NBRC1948 and, like the sourdough S. cerevisiae parent, produced appreciable levels of the positive aroma compounds 3-methylbutyl acetate (banana/pear), ethyl acetate (general fruit aroma) and ethyl hexanoate (green apple, aniseed, and cherry aroma). Based on these evidences, the phenotype-centered approach appears promising for designing de novo lager beer hybrids and may help to diversify aroma profiles in lager beer.

14.
Microorganisms ; 8(10)2020 Oct 19.
Article En | MEDLINE | ID: mdl-33086685

The use of ß-glucosidase positive strains, as tailored-starter cultures for table olives fermentation, is a useful biotechnological tool applied to accelerate the debittering process. Nowadays, strains belonging to Lactiplantibacillus plantarum species are selected for their high versatility and tolerance to stress conditions. The present study investigated the effect of different stress factors (pH, temperature and NaCl) on growth and on oleuropein-degrading abilities of selected L. plantarum strains. In addition, the presence of the beta-glucosidase gene was investigated by applying a PCR based approach. Results revealed that, overall, the performances of the tested strains appeared to be robust toward the different stressors. However, the temperature of 16 °C significantly affected the growth performance of the strains both singularly and in combination with other stressing factors since it prolongs the latency phase and reduces the maximum growth rate of strains. Similarly, the oleuropein degradation was mainly affected by the low temperature, especially in presence of low salt content. Despite all strains displayed the ability to reduce the oleuropein content, the beta-glucosidase gene was detected in five out of the nine selected strains, demonstrating that the ability to hydrolyze the oleuropein is not closely related to the presence of beta-glucosidase. Data of the present study suggest that is extremely important to test the technological performances of strains at process conditions in order to achieve a good selection of tailored starter cultures for table olives.

15.
Food Res Int ; 136: 109335, 2020 10.
Article En | MEDLINE | ID: mdl-32846533

The present study was carried out to produce Protected Denomination of Origin (PDO) Pecorino Siciliano cheese with a multi-species lactic acid bacteria (LAB) culture, composed of starter and non-starter strains in order to reduce the microbiological variability of the products derived without LAB inoculums. To this end, cheese samples produced in six factories located in five provinces (Agrigento, Catania, Enna, Palermo and Trapani) of Sicily, and previously characterised for physicochemical, microbiological and sensory aspects, have been investigated in this work for bacterial microbiome, fatty acid (FA) composition as well as volatile organic compound (VOC) profiles. Analysis of the cheese microbiomes indicated that streptococci (30.62-77.18% relative abundance) and lactobacilli (on average 25.90% relative abundance) dominated the bacterial communities of control cheeses, produced without exogenous inoculums, whereas the cheeses produced with the selected multi-strain culture saw the dominance of lactococci (in the range 6.49-14.92% relative abundance), streptococci and lactobacilli. After the addition of the selected mixed culture, Shannon index increased in all cheeses, but only the cheeses produced with the selected LAB mixed culture in the factory 2 showed Gini-Simpson diversity index (0.79) closer to the reference value (0.94) for a perfect even community. FA composition, mainly represented by saturated FA (on average 69.60% and 69.39% in control cheeses and experimental cheeses, respectively), was not affected by adding LAB culture. The presence of polyunsaturated FA ranged between 7.93 and 8.03% of FA. VOC profiles were different only for the content of butanoic acid, registered for the experimental cheeses at higher concentrations (on average 662.54 mg/kg) than control cheeses (barely 11.96 mg/kg). This study validated addition of the ad hoc starter/non-starter culture for PDO Pecorino cheese production.


Cheese , Lactobacillales , Animals , Cheese/analysis , Food Microbiology , Lactic Acid , Milk , Sicily
16.
Front Nutr ; 7: 46, 2020.
Article En | MEDLINE | ID: mdl-32373622

Citrus fruits processing is one of the foremost industrial activities in Sicily and the main residual by-product consists in peels and seeds (known as "pastazzo"). Traditionally this by-product has been used for different purposes, and only most recently, it has been described as source of a wide range of healthy bioactive compounds and dietary fibers. In the present work, a debittered food grade orange fiber (DOF), extracted from orange juice by-product, was experimentally obtained and tested as fat-replacer at different percentages (30, 50, and 70%) in bakery confectionery products (brioches). The DOF showed high total fiber content, low water activity and a high water binding capacity. The obtained bakery products were characterized for nutritional, technological and microbiological parameters through storage at room temperature. Results highlighted that the addition of DOF results in final products with increased moisture content, mainly after 1 day of storage, and good textural proprieties. Furthermore, the fat-replacing strategy, at different levels of DOF, resulted in final products with, besides a constant content of carbohydrates, showed lowered fat content, increased content of dietary fiber and protein. In particular, the 50% fat replacement allowed to obtain brioches with improved technological properties and with desirable microbiological traits, mostly within the first 24 h from production and up to 5 days of storage.

17.
Animals (Basel) ; 10(4)2020 Apr 07.
Article En | MEDLINE | ID: mdl-32272803

The present study aims to investigate the effect of dietary supplementation based on a blend of microencapsulated organic acids (sorbic and citric) and essential oils (thymol and vanillin) on chicken meat quality. A total of 420 male Ross 308 chicks were randomly assigned to two dietary treatments: the control group was fed with conventional diet (CON), while the other group received the control diet supplemented with 0.5% of a microencapsulated blend of organic acids and essential oils (AVI). In breast meat samples, intramuscular fat content and saturated/polyunsaturated fatty acids ratio were reduced by AVI supplementation (p < 0.05). Moreover, atherogenic (p < 0.01) and thrombogenic (p < 0.05) indices were lower in AVI than CON treatment. AVI raw meat showed a lower density of psychrotrophic bacteria (p < 0.05) at an initial time, and higher loads of enterococci after 4 days of refrigerated storage (p < 0.05). No contamination of Listeria spp., Campylobacter spp., and Clostridium spp. was found. TBARS values of the cooked meat were lower in the AVI treatment compared to CON (p < 0.01). Among colour parameters, a*, b* and C* values increased between 4 and 7 days of storage in AVI cooked meat (p < 0.05). Overall, organic acids and essential oils could improve the quality and shelf-life of poultry meat.

18.
Foods ; 8(10)2019 Oct 10.
Article En | MEDLINE | ID: mdl-31658772

Two extracts derived from plant material rich in hydrolysable (Tara, T; Caesalpinia spinosa) or condensed (Mimosa, M; Acacia mearnsii) tannins were added to lamb's diet and their effects on meat quality and on microbial population were evaluated; a diet without tannins represented the Control (C). Meat pH, vitamin E, intramuscular fat content and muscle fatty acid composition were determined. Oxidative stability and microbiological analyses were performed on meat samples after 0, 4 and 7 days of refrigerated storage. Psychrotrophic bacteria were identified through MALDI-TOF MS analysis. Regarding meat fatty acids, Tara treatment decreased the percentage of monounsaturated fatty acids. The counts of all microbial groups were similar among dietary treatments at day 0, while a significant reduction of microbial loads was observed in T-group at day 7. Pseudomonas fluorescens group count was significantly affected by T extract supplementation. The MALDI-TOF MS identification revealed the dominance of Pseudomonas fragi species in all samples while Pseudomonas lundensis, Brochothrix thermosphacta and Candida famata were revealed only in control ones. In conclusions, the tannin extract supplementation is a promising dietary strategy to preserve lamb meat quality.

19.
Sci Rep ; 9(1): 3355, 2019 03 04.
Article En | MEDLINE | ID: mdl-30833631

The vaginal microbiota of healthy women is dominated by lactobacilli, which exerts important health-promoting effects to the host. In the present study, 261 lactobacilli isolated from vagina of healthy women were screened for their potential probiotic characteristics. Safety features (haemolytic activity, antibiotic susceptibility, bile salt hydrolase activity) and functional properties (resistance to low pH and bile salts, lysozyme tolerance, gastrointestinal survival, antagonistic activity against pathogens, hydrophobicity, auto-aggregation, and co-aggregation abilities, hydrogen peroxide production, biofilm formation, exopolysaccharide production, adhesion capacity to both normal human vagina epithelial cells and Caco-2 epithelial cells, and lactic acid production) were in depth evaluated. Seven strains, identified as Lactobacillus rhamnosus, Lactobacillus helveticus and Lactobacillus salivarius fulfilled the criteria described above. Therefore, the vaginal ecosystem represents a suitable source of probiotic candidates that could be used in new functional formulates for both gastrointestinal and vaginal eubiosis.


Lactobacillus/isolation & purification , Probiotics/isolation & purification , Vagina/microbiology , Bacterial Adhesion , Caco-2 Cells , Drug Stability , Drug-Related Side Effects and Adverse Reactions/microbiology , Epithelial Cells/cytology , Female , Healthy Volunteers , Humans , Lactic Acid/biosynthesis , Vagina/cytology
20.
Front Nutr ; 6: 1, 2019.
Article En | MEDLINE | ID: mdl-30805342

The use of agro-industrial by-products for ruminant feed represents both an economical and environmental convenient way for reducing waste discharge and waste management costs for food industries. Large amounts of waste from citrus processing industries are available in Sicily, Italy. In the present study, the effect of dried citrus pulp as sheep dietary supplementation was evaluated on physico-chemical, microbiological and fatty acid composition of resulting milk and cheese. Pelleted feed integrated with molasses and blond orange pulp, replacing cane molasses, beet pulp and part of the maize and sunflower in ration, were administrated to ewes as an experimental treatment The experiment involved sixty Comisana breed sheep divided into two groups and two feeding trials (experimental and control). Ewe's milk and cheese samples were collected from January to April and analyzed for physico-chemical, microbiological and fatty acid profile composition. Results suggested that both the experimental milk and cheese were different from the controls. In particular, an increase of experimental milk yield and fat content were registered whilst the cheese samples exhibited a significant decrease of pH values and an increase in fat and protein contents. In addition, an increase of conjugated linoleic acids as well as of the oxidative stability were observed indicating the beneficial effect of dietary supplementation. Furthermore, among the main microbial groups, the experimental and control samples, no differences were detected. However, with the exception of streptococci, which was found higher in experimental cheeses, and staphylococci, which was significantly reduced by experimental feed. Moreover, the application of culture-independent methods highlighted the dominance of Lactobacillus rhamnosus/casei group in the experimental cheese, suggesting a driving role of the dietary supplementation in the cheese microbiota composition. The present study demonstrated that the inclusion of citrus by-products in the diet of small dairy ruminants is a promising feeding, which could positively affect milk composition and cheese manufacture.

...