Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Intervalo de año de publicación
1.
Am Nat ; 202(5): 699-720, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37963119

RESUMEN

AbstractDifferences among hummingbird species in bill length and shape have rightly been viewed as adaptive in relation to the morphology of the flowers they visit for nectar. In this study we examine functional variation in a behaviorally related but neglected feature: hummingbird feet. We gathered records of hummingbirds clinging by their feet to feed legitimately as pollinators or illegitimately as nectar robbers-"unorthodox" feeding behaviors. We measured key features of bills and feet for 220 species of hummingbirds and compared the 66 known "clinger" species (covering virtually the entire scope of hummingbird body size) with the 144 presumed "non-clinger" species. Once the effects of phylogenetic signal, body size, and elevation above sea level are accounted for statistically, hummingbirds display a surprising but functionally interpretable negative correlation. Clingers with short bills and long hallux (hind-toe) claws have evolved-independently-more than 20 times and in every major clade. Their biomechanically enhanced feet allow them to save energy by clinging to feed legitimately on short-corolla flowers and by stealing nectar from long-corolla flowers. In contrast, long-billed species have shorter hallux claws, as plant species with long-corolla flowers enforce hovering to feed, simply by the way they present their flowers.


Asunto(s)
Flores , Néctar de las Plantas , Animales , Filogenia , Flores/anatomía & histología , Aves/anatomía & histología , Conducta Alimentaria , Polinización
2.
Nature ; 622(7983): 537-544, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758942

RESUMEN

Climate's effect on global biodiversity is typically viewed through the lens of temperature, humidity and resulting ecosystem productivity1-6. However, it is not known whether biodiversity depends solely on these climate conditions, or whether the size and fragmentation of these climates are also crucial. Here we shift the common perspective in global biodiversity studies, transitioning from geographic space to a climate-defined multidimensional space. Our findings suggest that larger and more isolated climate conditions tend to harbour higher diversity and species turnover among terrestrial tetrapods, encompassing more than 30,000 species. By considering both the characteristics of climate itself and its geographic attributes, we can explain almost 90% of the variation in global species richness. Half of the explanatory power (45%) may be attributed either to climate itself or to the geography of climate, suggesting a nuanced interplay between them. Our work evolves the conventional idea that larger climate regions, such as the tropics, host more species primarily because of their size7,8. Instead, we underscore the integral roles of both the geographic extent and degree of isolation of climates. This refined understanding presents a more intricate picture of biodiversity distribution, which can guide our approach to biodiversity conservation in an ever-changing world.


Asunto(s)
Biodiversidad , Clima , Geografía , Animales , Conservación de los Recursos Naturales/métodos , Mapeo Geográfico , Humedad , Temperatura , Clima Tropical
3.
Proc Natl Acad Sci U S A ; 120(2): e2211974120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595684

RESUMEN

Landscape dynamics are widely thought to govern the tempo and mode of continental radiations, yet the effects of river network rearrangements on dispersal and lineage diversification remain poorly understood. We integrated an unprecedented occurrence dataset of 4,967 species with a newly compiled, time-calibrated phylogeny of South American freshwater fishes-the most species-rich continental vertebrate fauna on Earth-to track the evolutionary processes associated with hydrogeographic events over 100 Ma. Net lineage diversification was heterogeneous through time, across space, and among clades. Five abrupt shifts in net diversification rates occurred during the Paleogene and Miocene (between 30 and 7 Ma) in association with major landscape evolution events. Net diversification accelerated from the Miocene to the Recent (c. 20 to 0 Ma), with Western Amazonia having the highest rates of in situ diversification, which led to it being an important source of species dispersing to other regions. All regional biotic interchanges were associated with documented hydrogeographic events and the formation of biogeographic corridors, including the Early Miocene (c. 23 to 16 Ma) uplift of the Serra do Mar and Serra da Mantiqueira and the Late Miocene (c. 10 Ma) uplift of the Northern Andes and associated formation of the modern transcontinental Amazon River. The combination of high diversification rates and extensive biotic interchange associated with Western Amazonia yielded its extraordinary contemporary richness and phylogenetic endemism. Our results support the hypothesis that landscape dynamics, which shaped the history of drainage basin connections, strongly affected the assembly and diversification of basin-wide fish faunas.


Asunto(s)
Peces , Agua Dulce , Animales , Filogenia , Peces/genética , Ríos , América del Sur , Biodiversidad , Filogeografía
4.
Proc Biol Sci ; 288(1965): 20211879, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34905709

RESUMEN

Insular biodiversity is expected to be regulated differently than continental biota, but their determinants remain to be quantified at a global scale. We evaluated the importance of physical, environmental and historical factors on mammal richness and endemism across 5592 islands worldwide. We fitted generalized linear and mixed models to accommodate variation among biogeographic realms and performed analyses separately for bats and non-volants. Richness on islands ranged from one to 234 species, with up to 177 single island endemics. Diversity patterns were most consistently influenced by the islands' physical characteristics. Area positively affected mammal diversity, in particular the number of non-volant endemics. Island isolation, both current and past, was associated with lower richness but greater endemism. Flight capacity modified the relative importance of past versus current isolation, with bats responding more strongly to current and non-volant mammals to past isolation. Biodiversity relationships with environmental factors were idiosyncratic, with a tendency for greater effects sizes with endemism than richness. The historical climatic change was positively associated with endemism. In line with theory, we found that area and isolation were among the strongest drivers of mammalian biodiversity. Our results support the importance of past conditions on current patterns, particularly of non-volant species.


Asunto(s)
Biodiversidad , Clima , Animales , Geografía , Islas , Mamíferos
5.
Glob Ecol Biogeogr ; 30(9): 1899-1908, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34588924

RESUMEN

AIM: We aimed to dissect the spatial variation of the direct and indirect effects of climate and productivity on global species richness of terrestrial tetrapods. LOCATION: Global. TIME PERIOD: Present. MAJOR TAXA STUDIED: Terrestrial tetrapods. METHODS: We used a geographically weighted path analysis to estimate and map the direct and indirect effects of temperature, precipitation and primary productivity on species richness of terrestrial tetrapods across the globe. RESULTS: We found that all relationships shift in magnitude, and even in direction, among taxonomic groups, geographical regions and connecting paths. Direct effects of temperature and precipitation are generally stronger than both indirect effects mediated by productivity and direct effects of productivity. MAIN CONCLUSIONS: Richness gradients seem to be driven primarily by effects of climate on organismal physiological limits and metabolic rates rather than by the amount of productive energy. Reptiles have the most distinct relationships across tetrapods, with a clear latitudinal pattern in the importance of temperature versus water.

6.
PLoS Biol ; 19(7): e3001340, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252071

RESUMEN

Understanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary, and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially explicit, eco-evolutionary engine with a modular implementation that enables the modeling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatiotemporally dynamic landscapes. Modeled processes can include species' abiotic tolerances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, ß, and γ diversity, species ranges, ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we examine alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth's Cenozoic era. Our exploratory simulations simultaneously produce multiple realistic biodiversity patterns, such as the LDG, current species richness, and range size frequencies, as well as phylogenetic metrics. The model engine is open source and available as an R package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a key toward a numeric, interdisciplinary, and mechanistic understanding of the physical and biological processes that shape Earth's biodiversity.


Asunto(s)
Evolución Biológica , Simulación por Computador , Planeta Tierra , Biodiversidad , Ecología , Investigación Empírica , Especiación Genética
7.
PLoS One ; 14(11): e0225128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31774852

RESUMEN

This study uses species distribution modeling and physiological and functional traits to predict the impacts of climate change on native freshwater fish in the Murray-Darling Basin, Australia. We modelled future changes in taxonomic and functional diversity in 2050 and 2080 for two scenarios of carbon emissions, identifying areas of great interest for conservation. Climatic-environmental variables were used to model the range of 23 species of native fish under each scenario. The consensus model, followed by the physiological filter of lethal temperature was retained for interpretation. Our study predicts a severe negative impact of climate change on both taxonomic and functional components of ichthyofauna of the Murray-Darling Basin. There was a predicted marked contraction of species ranges under both scenarios. The predictions showed loss of climatically suitable areas, species and functional characters. There was a decrease in areas with high values of functional richness, dispersion and uniqueness. Some traits are predicted to be extirpated, especially in the most pessimistic scenario. The climatic refuges for fish fauna are predicted to be in the southern portion of the basin, in the upper Murray catchment. Incorporating future predictions about the distribution of ichthyofauna in conservation management planning will enhance resilience to climate change.


Asunto(s)
Peces/clasificación , Peces/fisiología , Animales , Australia , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Demografía , Modelos Biológicos , Reproducción
8.
Ecol Evol ; 9(19): 11136-11144, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31641461

RESUMEN

Ecological Niche Models (ENMs) have different performances in predicting potential geographic distributions. Here we meta-analyzed the likely effects of climate change on the potential geographic distribution of 1,205 bird species from the Neotropical region, modeled using eight ENMs and three Atmosphere-Ocean General Circulation Models (AOGCM). We considered the variability in ENMs performance to estimate a weighted mean difference between potential geographic distributions for baseline and future climates. On average, potential future ranges were projected to be from 25.7% to 44.5% smaller than current potential ranges across species. However, we found that 0.2% to 18.3% of the total variance in range shifts occurred "within species" (i.e., owing to the use of different modeling techniques and climate models) and 81.7% to 99.8% remained between species (i.e., it could be explained by ecological correlates). Using meta-analytical techniques akin to regression, we also showed that potential range shifts are barely predicted by bird biological traits. We demonstrated that one can combine and reduce species-specific effects with high uncertainty in ENMs and also explore potential causes of climate change effect on species using meta-analytical tools. We also highlight that the search for powerful correlates of climate change-induced range shifts can be a promising line of investigation.

9.
Biol Lett ; 15(10): 20190481, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31594495

RESUMEN

According to the island rule, small-bodied vertebrates will tend to evolve larger body size on islands, whereas the opposite happens to large-bodied species. This controversial pattern has been studied at the macroecological and biogeographical scales, but new developments in quantitative evolutionary genetics now allow studying the island rule from a mechanistic perspective. Here, we develop a simulation approach based on an individual-based model to model body size change on islands as a progressive adaptation to a moving optimum, determined by density-dependent population dynamics. We applied the model to evaluate body size differentiation in the pigmy extinct hominin Homo floresiensis, showing that dwarfing may have occurred in only about 360 generations (95% CI ranging from 150 to 675 generations). This result agrees with reports suggesting rapid dwarfing of large mammals on islands, as well as with the recent discovery that small-sized hominins lived in Flores as early as 700 kyr ago. Our simulations illustrate the power of analysing ecological and evolutionary patterns from an explicit quantitative genetics perspective.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Tamaño Corporal , Fósiles , Indonesia , Islas , Mamíferos
10.
An Acad Bras Cienc ; 91(2): e20180179, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31038531

RESUMEN

Expanding populations may loss genetic diversity because sequential founder events throughout a wave of demographic expansion may cause "allele surfing", as the alleles of founder individuals may propagate rapidly through space. The spatial components of allele surfing have been studied by geneticists, but have never been investigate on dynamic and shifting habitats. Here we used an individual-based-model (IBM) to study how interactions between different habitat restoration scenarios and biological characteristics (dispersal capacity) affect the spatial patterns of the genetic structure of a population during demographic expansion. We found that both habitat dynamics and dispersal capacity, as well as their interaction, were the drivers of emergent pattern of genetic diversity and allele surfing. Specifically, allele surfing is more common when a species with low dispersal capacity colonizes a large geographic area with slow restoration (low carrying capacity). Despite this, we showed that allele surfing can be reduced, or even avoided, by dispersal management through suitable habitat restoration. Thus, investigating how colonization generates a spatial variation in genetic diversity, and which parameters control the emergent genetic pattern, are essential steps to planning assisted gene flow, which is fundamental for an effective planning of habitat restoration.


Asunto(s)
Alelos , Evolución Biológica , Ecosistema , Genética de Población/métodos , Dinámica Poblacional , Humanos , Análisis Espacio-Temporal , Especificidad de la Especie
11.
Proc Biol Sci ; 286(1899): 20190242, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30914010

RESUMEN

Although many hypotheses have been proposed to explain why humans speak so many languages and why languages are unevenly distributed across the globe, the factors that shape geographical patterns of cultural and linguistic diversity remain poorly understood. Prior research has tended to focus on identifying universal predictors of language diversity, without accounting for how local factors and multiple predictors interact. Here, we use a unique combination of path analysis, mechanistic simulation modelling, and geographically weighted regression to investigate the broadly described, but poorly understood, spatial pattern of language diversity in North America. We show that the ecological drivers of language diversity are not universal or entirely direct. The strongest associations imply a role for previously developed hypothesized drivers such as population density, resource diversity, and carrying capacity with group size limits. The predictive power of this web of factors varies over space from regions where our model predicts approximately 86% of the variation in diversity, to areas where less than 40% is explained.


Asunto(s)
Lenguaje , Densidad de Población , Geografía , Humanos , Modelos Teóricos , América del Norte
12.
Trends Ecol Evol ; 34(3): 211-223, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591209

RESUMEN

The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, yet no consensus has been reached about its underlying causes. We argue that the reasons for this are the verbal nature of existing hypotheses, the failure to mechanistically link interacting ecological and evolutionary processes to the LDG, and the fact that empirical patterns are often consistent with multiple explanations. To address this issue, we synthesize current LDG hypotheses, uncovering their eco-evolutionary mechanisms, hidden assumptions, and commonalities. Furthermore, we propose mechanistic eco-evolutionary modeling and an inferential approach that makes use of geographic, phylogenetic, and trait-based patterns to assess the relative importance of different processes for generating the LDG.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecología , Modelos Biológicos , Distribución Animal , Geografía , Rasgos de la Historia de Vida , Filogenia , Dispersión de las Plantas
13.
Nat Commun ; 9(1): 4713, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413710

RESUMEN

A reliable description of any spatial pattern in species richness requires accurate knowledge about species geographical distribution. However, sampling bias may generate artefactual absences within species range and compromise our capacity to describe biodiversity patterns. Here, we analysed the spatial distribution of 35,000 marine species (varying from copepods to sharks) to identify missing occurrences (gaps) across their latitudinal range. We find a latitudinal gradient of species absence peaking near the equator, a pattern observed in both shallow and deep waters. The tropical gap in species distribution seems a consequence of reduced sampling effort at low latitudes. Overall, our results suggest that spatial gaps in species distribution are the main cause of the bimodal pattern of marine diversity. Therefore, only increasing sampling effort at low latitudes will reveal if the absence of species in the tropics, and the consequent dip in species richness, are artefacts of sampling bias or a natural phenomenon.


Asunto(s)
Organismos Acuáticos/fisiología , Biodiversidad , Especificidad de la Especie
14.
Science ; 361(6399)2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30026200

RESUMEN

Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate.


Asunto(s)
Biodiversidad , Cambio Climático , Simulación por Computador , Modelos Teóricos , Filogeografía , Dinámica Poblacional , América del Sur , Análisis Espacio-Temporal
15.
Am Nat ; 191(4): 421-434, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29570406

RESUMEN

A contemporary goal in ecology is to determine the ecological and evolutionary processes that generate recurring structural patterns in mutualistic networks. One of the great challenges is testing the capacity of neutral processes to replicate observed patterns in ecological networks, since the original formulation of the neutral theory lacks trophic interactions. Here, we develop a stochastic-simulation neutral model adding trophic interactions to the neutral theory of biodiversity. Without invoking ecological differences among individuals of different species, and assuming that ecological interactions emerge randomly, we demonstrate that a spatially explicit multitrophic neutral model is able to capture the recurrent structural patterns of mutualistic networks (i.e., degree distribution, connectance, nestedness, and phylogenetic signal of species interactions). Nonrandom species distribution, caused by probabilistic events of migration and speciation, create nonrandom network patterns. These findings have broad implications for the interpretation of niche-based processes as drivers of ecological networks, as well as for the integration of network structures with demographic stochasticity.


Asunto(s)
Evolución Biológica , Ecosistema , Modelos Genéticos , Animales , Simulación por Computador , Polinización , Dispersión de Semillas
16.
PLoS One ; 12(6): e0179684, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28654663

RESUMEN

Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions.


Asunto(s)
Distribución Animal/fisiología , Characiformes/fisiología , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Animales , Explotaciones Pesqueras , Especies Introducidas , Modelos Teóricos , Ríos , América del Sur
17.
Nat Commun ; 6: 8877, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26568451

RESUMEN

Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds.


Asunto(s)
Conducta Animal , Conservación de los Recursos Naturales , Ecosistema , Conducta Social , Animales , Animales Salvajes , Antílopes , Aves , Peso Corporal , Ciervos , Equidae , Humanos , Lagomorpha , Lagartos , Población Rural , Sciuridae , Población Urbana
18.
Evolution ; 69(5): 1301-12, 2015 05.
Artículo en Inglés | MEDLINE | ID: mdl-25800868

RESUMEN

Ecologists and biogeographers usually rely on a single phylogenetic tree to study evolutionary processes that affect macroecological patterns. This approach ignores the fact that each phylogenetic tree is a hypothesis about the evolutionary history of a clade, and cannot be directly observed in nature. Also, trees often leave out many extant species, or include missing species as polytomies because of a lack of information on the relationship among taxa. Still, researchers usually do not quantify the effects of phylogenetic uncertainty in ecological analyses. We propose here a novel analytical strategy to maximize the use of incomplete phylogenetic information, while simultaneously accounting for several sources of phylogenetic uncertainty that may distort statistical inferences about evolutionary processes. We illustrate the approach using a clade-wide analysis of the hummingbirds, evaluating how different sources of uncertainty affect several phylogenetic comparative analyses of trait evolution and biogeographic patterns. Although no statistical approximation can fully substitute for a complete and robust phylogeny, the method we describe and illustrate enables researchers to broaden the number of clades for which studies informed by evolutionary relationships are possible, while allowing the estimation and control of statistical error that arises from phylogenetic uncertainty. Software tools to carry out the necessary computations are offered.


Asunto(s)
Aves/genética , Filogenia , Programas Informáticos , Animales , Aves/clasificación , Ecología/métodos , Ecosistema , Evolución Molecular , Modelos Genéticos , Incertidumbre
19.
J Biogeogr ; 41(1): 23-38, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24563577

RESUMEN

AimThe fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. LocationThe contiguous United States. MethodsWe extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. ResultsConsistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait associated with survivorship in cold climates indicate niche conservatism. Main conclusionsTropical niche conservatism in the face of long-term climate change, probably initiated in the Late Cretaceous associated with the rise of the Rocky Mountains, is a strong driver of the phylogenetic structure of the angiosperm component of forest communities across the USA. However, local deterministic and/or stochastic processes account for perhaps a quarter of the variation in the MFA of local communities.

20.
BMC Bioinformatics ; 14: 324, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24229408

RESUMEN

BACKGROUND: Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. RESULTS: In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. CONCLUSION: We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets.


Asunto(s)
Algoritmos , Filogenia , Programas Informáticos , Proteínas Anfibias/genética , Animales , Proteínas Aviares/genética , Evolución Biológica , Carnívoros/genética , Quirópteros/genética , Biología Computacional/métodos , Biología Computacional/estadística & datos numéricos , Simulación por Computador , Secuencia de Consenso , Evolución Molecular , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...