Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Neurotox Res ; 42(2): 18, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393521

RESUMEN

Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Citoplasma/metabolismo , Enfermedades Neurodegenerativas/metabolismo
2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37895892

RESUMEN

The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.

3.
Neurotox Res ; 41(6): 514-525, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37458923

RESUMEN

Inhibition of enzymes responsible for endocannabinoid hydrolysis represents an invaluable emerging tool for the potential treatment of neurodegenerative disorders. Monoacylglycerol lipase (MAGL) is the enzyme responsible for degrading 2-arachydonoylglycerol (2-AG), the most abundant endocannabinoid in the central nervous system (CNS). Here, we tested the effects of the selective MAGL inhibitor JZL184 on the 3-nitropropinic acid (3-NP)-induced short-term loss of mitochondrial reductive capacity/viability and oxidative damage in rat brain synaptosomal/mitochondrial fractions and cortical slices. In synaptosomes, while 3-NP decreased mitochondrial function and increased lipid peroxidation, JZL184 attenuated both markers. The protective effects evoked by JZL184 on the 3-NP-induced mitochondrial dysfunction were primarily mediated by activation of cannabinoid receptor 2 (CB2R), as evidenced by their inhibition by the selective CB2R inverse agonist JTE907. The cannabinoid receptor 1 (CB1R) also participated in this effect in a lesser extent, as evidenced by the CB1R antagonist/inverse agonist AM281. In contrast, activation of CB1R, but not CB2R, was responsible for the protective effects of JZL184 on the 3-NP-iduced lipid peroxidation. Protective effects of JZL184 were confirmed in other toxic models involving excitotoxicity and oxidative damage as internal controls. In cortical slices, JZL184 ameliorated the 3-NP-induced loss of mitochondrial function, the increase in lipid peroxidation, and the inhibition of succinate dehydrogenase (mitochondrial complex II) activity, and these effects were independent on CB1R and CB2R, as evidenced by the lack of effects of AM281 and JTE907, respectively. Our novel results provide experimental evidence that the differential protective effects exerted by JZL184 on the early toxic effects induced by 3-NP in brain synaptosomes and cortical slices involve MAGL inhibition, and possibly the subsequent accumulation of 2-AG. These effects involve pro-energetic and redox modulatory mechanisms that may be either dependent or independent of cannabinoid receptors' activation.


Asunto(s)
Endocannabinoides , Sinaptosomas , Ratas , Animales , Sinaptosomas/metabolismo , Monoacilglicerol Lipasas/metabolismo , Receptores de Cannabinoides , Agonismo Inverso de Drogas , Encéfalo/metabolismo , Estrés Oxidativo , Benzodioxoles/farmacología , Receptor Cannabinoide CB1
4.
Front Genet ; 14: 1168713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152998

RESUMEN

Thallium (Tl) is a toxic heavy metal responsible for noxious effects in living organisms. As a pollutant, Tl can be found in the environment at high concentrations, especially in industrial areas. Systemic toxicity induced by this toxic metal can affect cell metabolism, including redox alterations, mitochondrial dysfunction, and activation of apoptotic signaling pathways. Recent focus on Tl toxicity has been devoted to the characterization of its effects at the nuclear level, with emphasis on DNA, which, in turn, may be responsible for cytogenetic damage, mutations, and epigenetic changes. In this work, we review and discuss past and recent evidence on the toxic effects of Tl at the systemic level and its effects on DNA. We also address Tl's role in cancer and its control.

5.
CNS Neurol Disord Drug Targets ; 22(7): 1039-1056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35713133

RESUMEN

Alzheimer's disease (AD) is considered the most frequent neurodegenerative disorder worldwide, compromising cognitive function in patients, with an average incidence of 1-3% in the open population. Protein aggregation into amyloidogenic plaques and neurofibrillary tangles, as well as neurodegeneration in the hippocampal and cortical areas, represent the neuropathological hallmarks of this disorder. Mechanisms involved in neurodegeneration include protein misfolding, augmented apoptosis, disrupted molecular signaling pathways and axonal transport, oxidative stress, inflammation, and mitochondrial dysfunction, among others. It is precisely through a disrupted energy metabolism that neural cells trigger toxic mechanisms leading to cell death. In this regard, the study of mitochondrial dynamics constitutes a relevant topic to decipher the role of mitochondrial dysfunction in neurological disorders, especially when considering that amyloid-beta peptides can target mitochondria. Specifically, the amyloid beta (Aß) peptide, known to accumulate in the brain of AD patients, has been shown to disrupt overall mitochondrial metabolism by impairing energy production, mitochondrial redox activity, and calcium homeostasis, thus highlighting its key role in the AD pathogenesis. In this work, we review and discuss recent evidence supporting the concept that mitochondrial dysfunction mediated by amyloid peptides contributes to the development of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Dinámicas Mitocondriales , Mitocondrias/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-34401955

RESUMEN

The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.


Asunto(s)
Cannabinoides , Endocannabinoides , Animales , Caenorhabditis elegans/metabolismo , Receptores de Cannabinoides/metabolismo , Mamíferos/metabolismo
7.
Neurotox Res ; 40(6): 1690-1706, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36522511

RESUMEN

The Endocannabinoid System (ECS, also known as Endocannabinoidome) plays a key role in the function of the Central Nervous System, though the participation of this system on the early development - specifically in neuroprotection and proliferation of nerve cells - has been poorly studied. Here, we collect and describe evidence regarding how cannabinoid receptors CB1R and CB2R regulate several cell markers related to proliferation. While CB1R participates in the modulation of neuronal and glial proliferation, CB2R is involved in the proliferation of glial cells. The endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) exert significant effects on nerve cell proliferation. AEA generated during embryogenesis induces major effects on the differentiation of neuronal progenitor cells, whereas 2-AG participates in modulating cell migration events rather than affecting the neural proliferation rate. However, although the ECS has been demonstrated to participate in neuroprotection, more characterization on its role in neuronal and glial proliferation and differentiation is needed, especially in brain areas with recognized high neurogenesis rates. This has encouraged scientists to elucidate and propose specific mechanisms related with these cell proliferation mechanisms to better understand some neurodegenerative disorders such as Parkinson, Huntington and Alzheimer diseases, in which neuronal loss and poor neurogenesis are crucial factors for their onset and progression. In this review, we collect and present recent evidence published pointing to an active role of the ECS in the development and proliferation of nerve cells.


Asunto(s)
Sistema Nervioso Central , Endocannabinoides , Receptores de Cannabinoides/fisiología , Neuronas , Proliferación Celular
8.
Neurotox Res ; 40(6): 2167-2178, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36069981

RESUMEN

The potential treatment of neurodegenerative disorders requires the development of novel pharmacological strategies at the experimental level, such as the endocannabinoid-based therapies. The effects of oleamide (OEA), a fatty acid primary amide with activity on cannabinoid receptors, was tested against mitochondrial toxicity induced by the electron transport chain complex II inhibitor, 3-nitropropionic acid (3-NP), in rat cortical slices. OEA prevented the 3-NP-induced loss of mitochondrial function/cell viability at a concentration range of 5 nM-25 µM, and this protective effect was observed only when the amide was administered as pretreatment, but not as post-treatment. The preservation of mitochondrial function/cell viability induced by OEA in the toxic model induced by 3-NP was lost when the slices were pre-incubated with the cannabinoid receptor 1 (CB1R) selective inhibitor, AM281, or the cannabinoid receptor 2 (CB2R) selective inhibitor, JTE-907. The 3-NP-induced inhibition of succinate dehydrogenase (mitochondrial Complex II) activity was recovered by 25 nM OEA. The amide also prevented the increased lipid peroxidation and the changes in reduced/oxidized glutathione (GSH/GSSG) ratio induced by 3-NP. The cell damage induced by 3-NP, assessed as incorporation of cellular propidium iodide, was mitigated by OEA. Our novel findings suggest that the neuroprotective properties displayed by OEA during the early stages of damage to cortical cells involve the converging activation of CB1R and CB2R and the increase in antioxidant activity, which combined may emerge from the preservation of the functional integrity of mitochondria.


Asunto(s)
Antioxidantes , Fármacos Neuroprotectores , Ratas , Animales , Antioxidantes/uso terapéutico , Receptores de Cannabinoides/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Mitocondrias , Amidas/farmacología , Amidas/metabolismo , Nitrocompuestos/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo
9.
Molecules ; 27(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956762

RESUMEN

The marine environment is highly diverse, each living creature fighting to establish and proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers representing a wonderful source of biologically active molecules aimed to communicate, defend from predators, or compete. Studies on these molecules' origins and activities have been systematic, although much is still to be discovered. Their broad chemical diversity results from integrating peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transformations resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplastic, and antiproliferative activity with potential pharmacological uses. Some are currently under clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with a well-known range of side effects, making anticancer drug research from new sources, such as marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite family, their chemical structures, and the mechanisms of action underlying their biological and pharmacological activities.


Asunto(s)
Antineoplásicos , Productos Biológicos , Cianobacterias , Antineoplásicos/química , Organismos Acuáticos/química , Productos Biológicos/química , Cianobacterias/química , Plomo/metabolismo , Macrólidos/metabolismo , Péptidos/química
10.
Neurotox Res ; 40(2): 573-584, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35380367

RESUMEN

The development, at the experimental level, of therapeutic strategies based on natural products to attenuate neurological alterations in degenerative disorders has gained attention. Antioxidant molecules exhibit both anti-inflammatory and neuroprotective properties. Alpha-mangostin (α-Man) is a natural xanthonoid isolated from the mangosteen tree with demonstrated antioxidant and cytoprotective properties. In this study, we investigated the antioxidant and protective properties of α-Man, both ex vivo and in vivo. We assessed the mitochondrial reductant capacity and oxidative damage to lipids in rat cortical slices, and several endpoints characteristic of physiological stress in the nematode, Caenorhabditis elegans (C. elegans), upon exposure to the parkinsonian neurotoxin, 6-hydroxydopamine (6-OHDA). In rat cortical slices, α-Man (25 and 50 µM) reduced the 6-OHDA (100 µM)-induced oxidative damage to lipid levels, but failed to reverse loss in cell viability. In wild-type (N2) C. elegans, α-Man (5-100 µM) protected against 6-OHDA (25 mM)-induced decrease in survival when administered either as pre- or post-treatment. Protective effects of α-Man were also observed on survival in the VC1772 strain (skn-1 KO-) exposed to 6-OHDA, though the extent of the protection was lesser than in the wild-type N2 strain. However, α-Man (5-50 µM) failed to attenuate the 6-OHDA-induced motor alterations in the N2 strain. The loss of lifespan induced by 6-OHDA in the N2 strain was fully reversed by high concentrations of α-Man. In addition, while 6-OHDA decreased the expression of glutathione S-transferase in the CL2166 C. elegans strain, α-Man preserved and stimulated the expression of this protein. α-Man (25 µM) also prevented 6-OHDA-induced dopaminergic neurodegeneration in the BZ555 C. elegans strain. Altogether, our novel results suggest that α-Man affords partial protection against several, but not all, short-term toxic effects induced by 6-OHDA in cortical slices and in a skn-1-dependent manner in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Animales , Animales Modificados Genéticamente , Antioxidantes/farmacología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo , Oxidopamina/metabolismo , Oxidopamina/toxicidad , Ratas , Xantonas
11.
Neurotox Res ; 40(3): 814-824, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35476314

RESUMEN

Thallium (Tl+) is a heavy metal that causes toxicity in several organs, including the brain. Its cytotoxic profile, combined with its affinity for tumor cells when used as a radioligand for labeling these cells, suggests its potential use as antitumor therapy. In this study, glioblastoma cell lines C6 (from rat) and U373 (from human) were exposed to increased concentrations of thallium(I) acetate (5, 10, 50, 100, or 200 µM) and several toxic endpoints were evaluated, including loss of confluence and morphological changes, loss of cell viability, changes in cell cycle, and apoptosis. Tl+ was detected in cells exposed to thallium(I) acetate, demonstrating efficient uptake mechanism. Confluence in both cell lines decreased in a concentration-dependent manner (50-200 µM), while morphological changes (cell shrinkage and decreased cell volume) were more evident at exposures to higher Tl+ concentrations. For both parameters, the effects of Tl+ were more prominent in C6 cells compared to U373 cells. The same trend was observed for cell viability, with Tl+ affecting this parameter in C6 cells at low concentrations, whereas U373 cells showed greater resistance, with significant changes observed only at the higher concentrations. C6 and U373 cells treated with Tl+ also showed morphological characteristics corresponding to apoptosis. The cytotoxic effects of Tl+ were also assessed in neural and astrocytic primary cultures from the whole rat brain. Primary neural and astrocytic cultures were less sensitive than C6 and U373 cells, showing changes in cell viability at 50 and 100 µM concentrations, respectively. Cell cycle in both brain tumor cell lines was altered by Tl+ in G1/G2 and S phases. In addition, when combined with temozolamide (500 µM), Tl+ elicited cell cycle alterations, increasing SubG1 population. Combined, our novel results characterize and validate the cytotoxic and antiproliferative effects of Tl+ in glioblastoma cells.


Asunto(s)
Antineoplásicos , Glioblastoma , Animales , Antineoplásicos/farmacología , Apoptosis , Técnicas de Cultivo de Célula , Ciclo Celular , Glioblastoma/metabolismo , Ratas , Talio/toxicidad
12.
Toxicon ; 210: 25-31, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35183570

RESUMEN

Snake venoms are complex mixtures of molecules with several biological activities. Among these molecules, the enzymes with phospholipase A2 activity have been extensively studied in the venoms from snakes because of their importance in the envenomation process and symptoms. The Mexican rattlesnake Crotalus molossus nigrescens is widely distributed in the Mexican plateau. Unlike other crotalids, its venom components have been poorly studied. Here, we characterized the phospholipase activity of one fraction isolated from the venom of this snake and we determined the cytotoxic and neurotoxic effects on brain tumor cells and neuronal primary cultures, respectively. After reverse phase chromatography, we obtained a fraction which was analyzed by mass spectrometry showing higher activity than that from a PLA2 from bee venom used as control. This fraction was enriched with three basic Asp49 phospholipases with molecular masses of 12.5, 13.9 and 14.2 kDa. Their complete amino acid sequences were determined, and their predicted tertiary structures were generated using the model building softwares I-tasser and Chimera. Viability assays revealed that the fraction showed cytotoxic activity against brain tumor cells (C6, RG2 and Daoy) with IC50 values ranging between 10 and 100 ng/ml, whereas an IC50 > 100 ng/ml was exerted in rat primary astrocytes. These findings might be relevant in oncological medicine due to their potential as anticancer agents and low neurotoxic effects compared to conventional drugs.


Asunto(s)
Antineoplásicos , Venenos de Crotálidos , Neoplasias , Animales , Venenos de Crotálidos/química , Crotalus , Neoplasias/tratamiento farmacológico , Fosfolipasas A2/química , Fosfolipasas A2/farmacología , Ratas , Venenos de Serpiente/química
13.
Neurotox Res ; 38(4): 941-956, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32930995

RESUMEN

The endocannabinoid system has been associated with antiproliferative effects in several types of tumors through cannabinoid receptor-mediated cell death mechanisms. Oleamide (ODA) is a CB1/CB2 agonist associated with cell growth and migration by adhesion and/or ionic signals associated with Gap junctions. Antiproliferative mechanisms related to ODA remain unknown. In this work, we evaluated the effects of ODA on cell viability and morphological changes in a rat RG2 glioblastoma cell line and compared these effects with primary astrocyte cultures from 8-day postnatal rats. RG2 and primary astrocyte cultures were treated with ODA at increasing concentrations (25, 50, 100, and 200 µM) for different periods of time (12, 24, and 48 h). Changes in RG2 cell viability and morphology induced by ODA were assessed by viability/mitochondrial activity test and phase contrast microscopy, respectively. The ratios of necrotic and apoptotic cell death, and cell cycle alterations, were evaluated by flow cytometry. The roles of CB1 and CB2 receptors on ODA-induced changes were explored with specific receptor antagonists. ODA (100 µM) induced somatic damage, detachment of somatic bodies, cytoplasmic polarization, and somatic shrinkage in RG2 cells at 24 and 48 h. In contrast, primary astrocytes treated at the same ODA concentrations exhibited cell aggregation but not cell damage. ODA (100 µM) increased apoptotic cell death and cell arrest in the G1 phase at 24 h in the RG2 line. The effects induced by ODA on cell viability of RG2 cells were independent of CB1 and CB2 receptors or changes in intracellular calcium transient. Results of this novel study suggest that ODA exerts specific antiproliferative effects on RG2 glioblastoma cells through unconventional apoptotic mechanisms not involving canonical signals.


Asunto(s)
Muerte Celular/efectos de los fármacos , Glioblastoma/metabolismo , Ácidos Oléicos/toxicidad , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Hipnóticos y Sedantes/toxicidad , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Endogámicas F344 , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores
14.
Neurotox Res ; 38(4): 929-940, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32813208

RESUMEN

Neuroprotective approaches comprising different mechanisms to counteract the noxious effects of excitotoxicity and oxidative stress need validation and detailed characterization. Although S-allylcysteine (SAC) is a natural compound exhibiting a broad spectrum of protective effects characterized by antioxidant, anti-inflammatory, and neuromodulatory actions, the mechanisms underlying its protective role on neuronal cell damage triggered by early excitotoxic insults remain elusive. In this study, we evaluated if the preconditioning or the post-treatment of isolated rat cortical slices with SAC (100 µM) can ameliorate the toxic effects induced by the excitotoxic metabolite quinolinic acid (QUIN, 100 µM), and whether this protective response involves the early display of specific antioxidant and neuroprotective signals. For this purpose, cell viability/mitochondrial reductive capacity, lipid peroxidation, levels of reduced and oxidized glutathione (GSH and GSSG, respectively), the rate of cell damage, the NF-E2-related factor 2/antioxidant response element (Nrf2/ARE) binding activity, heme oxygenase 1 (HO-1) regulation, extracellular signal-regulated kinase (ERK1/2) phosphorylation, and the levels of tumor necrosis factor-alpha (TNF-α) and the neurotrophin brain-derived neurotrophic factor (BDNF) were all estimated in tissue slices exposed to SAC and/or QUIN. The incubation of slices with QUIN augmented all toxic endpoints, whereas the addition of SAC prevented and/or recovered all toxic effects of QUIN, exhibiting better results when administered 60 min before the toxin and demonstrating protective and antioxidant properties. The early stimulation of Nrf2/ARE binding activity, the upregulation of HO-1, the ERK1/2 phosphorylation and the preservation of BDNF tissue levels by SAC demonstrate that this molecule displays a wide range of early protective signals by triggering orchestrated antioxidant responses and neuroprotective strategies. The relevance of the characterization of these mechanisms lies in the confirmation that the protective potential exerted by SAC begins at the early stages of excitotoxicity and neurodegeneration and supports the design of integral prophylactic/therapeutic strategies to reduce the deleterious effects observed in neurodegenerative disorders with inherent excitotoxic events.


Asunto(s)
Elementos de Respuesta Antioxidante/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Cisteína/análogos & derivados , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Elementos de Respuesta Antioxidante/fisiología , Corteza Cerebral/efectos de los fármacos , Cisteína/farmacología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Fármacos Neuroprotectores/farmacología , Técnicas de Cultivo de Órganos , Estrés Oxidativo/fisiología , Unión Proteica/fisiología , Ratas , Ratas Wistar
15.
Neurotox Res ; 38(2): 287-298, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32468422

RESUMEN

Monovalent thallium (Tl+) is a cation that can exert complex neurotoxic patterns in the brain by mechanisms that have yet to be completely characterized. To learn more about Tl+ toxicity, it is necessary to investigate its major effects in vivo and its ability to trigger specific signaling pathways (such as the antioxidant SKN-1 pathway) in different biological models. Caenorhabditis elegans (C. elegans) is a nematode constituting a simple in vivo biological model with a well-characterized nervous system, and high genetic homology to mammalian systems. In this study, both wild-type (N2) and skn-1 knockout (KO) mutant C. elegans strains subjected to acute and chronic exposures to Tl+ [2.5-35 µM] were evaluated for physiological stress (survival, longevity, and worm size), motor alterations (body bends), and biochemical changes (glutathione S-transferase regulation in a gst-4 fluorescence strain). While survival was affected by Tl+ in N2 and skn-1 KO (worms lacking the orthologue of mammalian Nrf2) strains in a similar manner, the longevity was more prominently decreased in the skn-1 KO strain compared with the wild-type strain. Moreover, chronic exposure led to a greater compromise in the longevity in both strains compared with acute exposure. Tl+ also induced motor alterations in both skn-1 KO and wild-type strains, as well as changes in worm size in wild-type worms. In addition, preconditioning nematodes with the well-known antioxidant S-allylcysteine (SAC) reversed the Tl+-induced decrease in survival in the N2 strain. GST fluorescent expression was also decreased by the metal in the nematode, and recovered by SAC. Our results describe and validate, for the first time, features of the toxic pattern induced by Tl+ in an in vivo biological model established with C. elegans, supporting an altered redox component in Tl+ toxicity, as previously described in mammal models. We demonstrate that the presence of the orthologous SKN-1 pathway is required for worms in evoking an efficient antioxidant defense. Therefore, the nematode represents an optimal model to reproduce mammalian Tl+ toxicity, where toxic mechanisms and novel therapeutic approaches of clinical value may be successfully pursued.


Asunto(s)
Antioxidantes/farmacología , Tamaño Corporal/efectos de los fármacos , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Cisteína/análogos & derivados , Proteínas de Unión al ADN/efectos de los fármacos , Longevidad/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Factores de Transcripción/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Inactivación de Genes , Glutatión Transferasa/efectos de los fármacos , Glutatión Transferasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Neurotox Res ; 37(1): 126-135, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31286434

RESUMEN

A number of physiological responses in the central nervous system (CNS) are regulated by the endocannabinoid system (ECS). Inhibition of neuronal excitability via activation of cannabinoid receptors (CBr) constitutes a potential protective response against neurotoxic insults. Oleamide (ODA) is a fatty acid amide with endocannabinoid profile exerting several effects in the CNS, though its neuroprotective properties remain unknown. The tryptophan metabolite quinolinic acid (QUIN) elicits toxic effects via overactivation of N-methyl-D-aspartate receptors (NMDAr) after its accumulation in the CNS under pathological conditions. Here, we investigated the protective properties of ODA against the excitotoxic damage induced by QUIN in rat brain synaptosomes and cortical slices, and whether these effects are linked to the stimulation of the endocannabinoid system via CB1 and/or CB2 receptor activation. ODA (1-50 µM) prevented the QUIN (100 µM)-induced loss of mitochondrial reductive capacity in synaptosomes in a mechanism partially mediated by CB1 receptor, as evidenced by the recovery of mitochondrial dysfunction induced by co-incubation with the CB1 receptor antagonist/inverse agonist AM281 (1 µM). In cortical slices, ODA prevented the short-term QUIN-induced loss of cell viability and the cell damage in a partial CB1 and CB2 receptor-dependent manner. Altogether, these findings demonstrate the neuroprotective and modulatory properties of ODA in biological brain preparations exposed to excitotoxic insults and the partial role that the stimulation of CB1 and CB2 receptors exerts in these effects.


Asunto(s)
Supervivencia Celular/fisiología , Corteza Cerebral/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácidos Oléicos/farmacología , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/fisiología , Animales , Encéfalo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Morfolinas/farmacología , Ácidos Oléicos/antagonistas & inhibidores , Pirazoles/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas
18.
Neurotox Res ; 37(2): 326-337, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31773641

RESUMEN

Caffeic acid (CA) is a hydroxycinnamic acid derivative and polyphenol with antioxidant and anti-inflammatory activities. The neuroprotective properties of CA still need detailed characterization in different biological models. Here, the antioxidant and neuroprotective effects of CA were compared in in vitro and in vivo neurotoxic models. Biochemical outcomes of cell dysfunction, oxidative damage, and transcriptional regulation were assessed in rat cortical slices, whereas endpoints of physiological stress and motor alterations were characterized in Caenorhabditis elegans (C. elegans). In rat cortical slices, CA (100 µM) prevented, in a differential manner, the loss of reductive capacity, the cell damage, and the oxidative damage induced by the excitotoxin quinolinic acid (QUIN, 100 µM), the pro-oxidant ferrous sulfate (FeSO4, 25 µM), and the dopaminergic toxin 6-hydroxydopamine (6-OHDA, 100 µM). CA also restored the levels of nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE; a master antioxidant regulatory pathway) binding activity affected by the three toxins. In wild-type (N2) of C. elegans, but not in the skn-1 KO mutant strain (worms lacking the orthologue of mammalian Nrf2), CA (25 mM) attenuated the loss of survival induced by QUIN (100 mM), FeSO4 (15 mM), and 6-OHDA (25 mM). Motor alterations induced by the three toxic models in N2 and skn-1 KO strains were prevented by CA in a differential manner. Our results suggest that (1) CA affords partial protection against different toxic insults in mammalian brain tissue and in C. elegans specimens; (2) the Nrf2/ARE binding activity participates in the protective mechanisms evoked by CA in the mammalian cortical tissue; (3) the presence of the orthologous skn-1 pathway is required in the worms for CA to exert protective effects; and (4) CA exerts antioxidant and neuroprotective effects through homologous mechanisms in different species.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Cafeicos/farmacología , Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Especificidad de la Especie
19.
J Oncol ; 2019: 2563092, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275378

RESUMEN

BACKGROUND: Glioblastoma is the most common malignant tumor of Central Nervous System. Despite the research in therapeutics, the prognosis is dismal. Malignant glioma stem cells (MGSCs) are a major cause of treatment failure and increasing tumor recurrence. In general, cancer stem cells (CSCs) express prominin-1 (CD133), considered as a potential therapeutic target. In this study, we produced an avian immunotoxin directed against the subpopulation of CD133+ CSCs within a malignant glioma. We used the avian IgY because it has various advantages as increased affinity to mammal antigens and inexpensive obtention of large amounts of specific antibodies (approximately 1 mg/per egg). The design, production, purification and use of IgY anti CD133 immunotoxin constitute an original goal of this research. METHODS: The immunodominant peptide of CD133 was designed to immunize hens; also, the extracellular domain of CD133 was cloned to probe the IgY antibodies. In parallel, a recombinant abrin A chain was produced in E. coli in order to join it to the Fc domain of the anti-CD133 IgY to conform the immunotoxin. This anti-CD133 IgY anti-tumor immunotoxin was tested in vitro and in vivo. Results. The cytotoxicity of the immunotoxin in vitro showed that IgY-abrin immunotoxin reduced 55% cell viability. After subcutaneous MGSCs implantation, the animals treated intraperitoneally or intratumorally with the IgY-abrin immunotoxin showed more than 50% decrease of tumor volume. CONCLUSION: Results showed that the IgY-abrin immunotoxin had cytotoxic activity against CD133+ MGSCs and provides a novel approach for the immunotherapy of glioblastoma.

20.
Neuroscience ; 401: 84-95, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668975

RESUMEN

The endocannabinoid system (ECS) regulates several physiological processes in the Central Nervous System, including the modulation of neuronal excitability via activation of cannabinoid receptors (CBr). Both glutaric acid (GA) and quinolinic acid (QUIN) are endogenous metabolites that, under pathological conditions, recruit common toxic mechanisms. A synergistic effect between them has already been demonstrated, supporting potential implications for glutaric acidemia type I (GA I). Here we investigated the possible involvement of a cannabinoid component in the toxic model exerted by QUIN + GA in rat cortical slices and primary neuronal cell cultures. The effects of the CB1 receptor agonist anandamide (AEA), and the fatty acid amide hydrolase inhibitor URB597, were tested on cell viability in cortical brain slices and primary neuronal cultures exposed to QUIN, GA, or QUIN + GA. As a pre-treatment to the QUIN + GA condition, AEA prevented the loss of cell viability in both preparations. URB597 only protected in a moderate manner the cultured neuronal cells against the QUIN + GA-induced damage. The use of the CB1 receptor reverse agonist AM251 in both biological preparations prevented partially the protective effects exerted by AEA, thus suggesting a partial role of CB1 receptors in this toxic model. AEA also prevented the cell damage and apoptotic death induced by the synergic model in cell cultures. Altogether, these findings demonstrate a modulatory role of the ECS on the synergic toxic actions exerted by QUIN + GA, thus providing key information for the understanding of the pathophysiological events occurring in GA I.


Asunto(s)
Ácidos Araquidónicos/farmacología , Corteza Cerebral/efectos de los fármacos , Endocannabinoides/farmacología , Glutaratos/toxicidad , Neuronas/efectos de los fármacos , Alcamidas Poliinsaturadas/farmacología , Ácido Quinolínico/toxicidad , Animales , Benzamidas/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Carbamatos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sinergismo Farmacológico , Endocannabinoides/metabolismo , Femenino , Masculino , Neuronas/metabolismo , Piperidinas/farmacología , Embarazo , Pirazoles/farmacología , Ratas , Ratas Endogámicas WF , Receptores de Cannabinoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA