Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sci Immunol ; 7(70): eabj8301, 2022 04 15.
Article En | MEDLINE | ID: mdl-35427178

Innate lymphoid cells (ILCs) are highly plastic and predominantly mucosal tissue-resident cells that contribute to both homeostasis and inflammation depending on the microenvironment. The discovery of naïve-like ILCs suggests an ILC differentiation process that is akin to naïve T cell differentiation. Delineating the mechanisms that underlie ILC differentiation in tissues is crucial for understanding ILC biology in health and disease. Here, we showed that tonsillar ILCs expressing CD45RA lacked proliferative activity, indicative of cellular quiescence. CD62L distinguished two subsets of CD45RA+ ILCs. CD45RA+CD62L+ ILCs (CD62L+ ILCs) resembled circulating naïve ILCs because they lacked the transcriptional, metabolic, epigenetic, and cytokine production signatures of differentiated ILCs. CD45RA+CD62L- ILCs (CD62L- ILCs) were epigenetically similar to CD62L+ ILCs but showed a transcriptional, metabolic, and cytokine production signature that was more akin to differentiated ILCs. CD62L+ and CD62L- ILCs contained uni- and multipotent precursors of ILC1s/NK cells and ILC3s. Differentiation of CD62L+ and CD62L- ILCs led to metabolic reprogramming including up-regulation of genes associated with glycolysis, which was needed for their effector functions after differentiation. CD62L- ILCs with preferential differentiation capacity toward IL-22-producing ILC3s accumulated in the inflamed mucosa of patients with inflammatory bowel disease. These data suggested distinct differentiation potential of CD62L+ and CD62L- ILCs between tissue microenvironments and identified that manipulation of these cells is a possible approach to restore tissue-immune homeostasis.


Immunity, Innate , Killer Cells, Natural , Cell Differentiation , Humans , Inflammation , Lymphocyte Activation
2.
Eur J Immunol ; 52(5): 737-752, 2022 05.
Article En | MEDLINE | ID: mdl-35245389

Resident memory T lymphocytes (TRM ) of epithelial tissues and the Bm protect their host tissue. To what extent these cells are mobilized and contribute to systemic immune reactions is less clear. Here, we show that in secondary immune reactions to the measles-mumps-rubella (MMR) vaccine, CD4+ TRM are mobilized into the blood within 16 to 48 h after immunization in humans. This mobilization of TRM is cognate: TRM recognizing other antigens are not mobilized, unless they cross-react with the vaccine. We also demonstrate through methylome analyses that TRM are mobilized from the Bm. These mobilized cells make significant contribution to the systemic immune reaction, as evidenced by their T-cell receptor Vß clonotypes represented among the newly generated circulating memory T-cells, 14 days after vaccination. Thus, TRM of the Bm confer not only local, but also systemic immune memory.


Immunologic Memory , Vaccines , Bone Marrow , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans
3.
Front Immunol ; 12: 674080, 2021.
Article En | MEDLINE | ID: mdl-34745084

Tonsil hyperplasia is the most common cause of pediatric obstructive sleep apnea (OSA). Despite the growing knowledge in tissue immunology of tonsils, the immunopathology driving tonsil hyperplasia and OSA remains unknown. Here we used multi-parametric flow cytometry to analyze the composition and phenotype of tonsillar innate lymphoid cells (ILCs), T cells, and B cells from pediatric patients with OSA, who had previous polysomnography. Unbiased clustering analysis was used to delineate and compare lymphocyte heterogeneity between two patient groups: children with small tonsils and moderate OSA (n = 6) or large tonsils and very severe OSA (n = 13). We detected disturbed ILC and B cell proportions in patients with large tonsils, characterized by an increase in the frequency of naïve CD27-CD21hi B cells and a relative reduction of ILCs. The enrichment of naïve B cells was not commensurate with elevated Ki67 expression, suggesting defective differentiation and/or migration rather than cellular proliferation to be the causative mechanism. Finally, yet importantly, we provide the flow cytometry data to be used as a resource for additional translational studies aimed at investigating the immunological mechanisms of pediatric tonsil hyperplasia and OSA.


Lymphocytes/immunology , Palatine Tonsil/immunology , Palatine Tonsil/pathology , Sleep Apnea, Obstructive/immunology , Child, Preschool , Female , Flow Cytometry , Humans , Hyperplasia , Immunity, Innate , Male , Memory B Cells/immunology , Receptors, CXCR5/analysis , Tumor Necrosis Factor Receptor Superfamily, Member 7/analysis
4.
Sci Immunol ; 6(64): eabk0894, 2021 Oct 22.
Article En | MEDLINE | ID: mdl-34519539

Cross-reactive CD4+ T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2­reactive CD8+ T cells. However, large numbers of memory CD8+ T cells reside in tissues, feasibly harboring localized SARS-CoV-2­specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019). We found that SARS-CoV-2­specific memory CD4+ T cells could be found at similar frequencies in the tonsils and peripheral blood in unexposed individuals, whereas functional SARS-CoV-2­specific memory CD8+ T cells were almost only detectable in the tonsils. Tonsillar SARS-CoV-2­specific memory CD8+ T cells displayed a follicular homing and tissue-resident memory phenotype, similar to tonsillar Epstein-Barr virus­specific memory CD8+ T cells, but were functionally less potent than other virus-specific memory CD8+ T cell responses. The presence of preexisting tissue-resident memory CD8+ T cells in unexposed individuals could potentially enable rapid sentinel immune responses against SARS-CoV-2.


Adenoids/immunology , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Adenoids/cytology , Adult , Aged , Child, Preschool , Female , Flow Cytometry , Humans , Male , Middle Aged
5.
Trends Immunol ; 41(10): 902-917, 2020 10.
Article En | MEDLINE | ID: mdl-32917510

Although the function of the circulating immune cell compartment has been studied in detail for decades, limitations in terms of access and cell yields from peripheral tissues have restricted our understanding of tissue-based immunity, particularly in humans. Recent advances in high-throughput protein analyses, transcriptional profiling, and epigenetics have partially overcome these obstacles. Innate lymphoid cells (ILCs) are predominantly tissue-resident, and accumulating data indicate that they have significant tissue-specific functions. We summarize current knowledge of ILC phenotypes in various tissues in mice and humans, aiming to clarify ILC immunity in distinct anatomical locations.


Immunity, Innate , Lymphocytes , Animals , Humans , Immunity, Innate/immunology , Lymphocytes/cytology , Lymphocytes/immunology
6.
Nat Commun ; 11(1): 2049, 2020 04 27.
Article En | MEDLINE | ID: mdl-32341343

ILCs and T helper cells have been shown to exert bi-directional regulation in mice. However, how crosstalk between ILCs and CD4+ T cells influences immune function in humans is unknown. Here we show that human intestinal ILCs co-localize with T cells in healthy and colorectal cancer tissue and display elevated HLA-DR expression in tumor and tumor-adjacent areas. Although mostly lacking co-stimulatory molecules ex vivo, intestinal and peripheral blood (PB) ILCs acquire antigen-presenting characteristics triggered by inflammasome-associated cytokines IL-1ß and IL-18. IL-1ß drives the expression of HLA-DR and co-stimulatory molecules on PB ILCs in an NF-κB-dependent manner, priming them as efficient inducers of cytomegalovirus-specific memory CD4+ T-cell responses. This effect is strongly inhibited by the anti-inflammatory cytokine TGF-ß. Our results suggest that circulating and tissue-resident ILCs have the intrinsic capacity to respond to the immediate cytokine milieu and regulate local CD4+ T-cell responses, with potential implications for anti-tumor immunity and inflammation.


Antigen-Presenting Cells/immunology , Cytokines/immunology , Immunity, Innate , Lymphocytes/immunology , Animals , Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Humans , Inflammasomes/immunology , Interleukin-18/immunology , Interleukin-1beta/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Leukocytes, Mononuclear/immunology , Mice
7.
Eur J Immunol ; 49(9): 1344-1355, 2019 09.
Article En | MEDLINE | ID: mdl-31151137

The Ikaros family of transcription factors (TFs) are important regulators of lymphocyte function. However, their roles in human innate lymphoid cell (ILC) function remain unclear. Here, we found that Ikaros (IKZF1) is expressed by all ILC subsets, including NK cells, in blood, tonsil, and gut, while Helios (IKZF2) is preferentially expressed by ILC3 in tonsil and gut. Aiolos (IKZF3) followed the expression pattern of T-bet and Eomes, being predominantly expressed by ILC1 and NK cells. Differentiation of IFN-γ-producing ILC1 and NK cells from ILC3 by IL-1ß plus IL-12-stimulation was associated with upregulation of T-bet and Aiolos. Selective degradation of Aiolos and Ikaros by lenalidomide suppressed ILC1 and NK cell differentiation and expression of ILC1 and NK cell-related transcripts (LEF1, PRF1, GRZB, CD244, NCR3, and IRF8). In line with reduced ILC1/NK cell differentiation, we observed an increase in the expression of the ILC3-related TF Helios, as well as ILC3 transcripts (TNFSF13B, IL22, NRP1, and RORC) and in the frequency of IL-22 producing ILC3 in cultures with IL-1ß and IL-23. These data suggest that suppression of Aiolos and Ikaros expression inhibits ILC1 and NK cell differentiation while ILC3 function is maintained. Hence, our results open up for new possibilities in targeting Ikaros family TFs for modulation of type 1/3 immunity in inflammation and cancer.


Cell Differentiation/immunology , Cell Transdifferentiation/immunology , Ikaros Transcription Factor/immunology , Killer Cells, Natural/immunology , Lenalidomide/immunology , Cells, Cultured , Humans , Immunity, Innate/immunology , Interferon Regulatory Factors/immunology , Interleukin-12/immunology , Interleukin-1beta/immunology , Lymphocytes/immunology
8.
J Biol Chem ; 294(15): 6027-6041, 2019 04 12.
Article En | MEDLINE | ID: mdl-30782844

Escherichia coli and Klebsiella pneumoniae are opportunistic pathogens that are commonly associated with infections at mucosal surfaces, such as the lung or the gut. The host response against these types of infections includes the release of epithelial-derived antimicrobial factors such as lipocalin-2 (LCN-2), a protein that specifically inhibits the iron acquisition of Enterobacteriaceae by binding and neutralizing the bacterial iron-scavenging molecule enterobactin. Regulation of epithelial antimicrobial responses, including the release of LCN-2, has previously been shown to depend on IL-22, a cytokine produced by innate lymphoid cells type 3 (ILC3) during Enterobacteriaceae infections. However, much remains unknown about the extent to which antimicrobial responses are regulated by IL-22 and how IL-22 regulates the expression and production of LCN-2 in intestinal epithelial cells (IECs). Our study demonstrates how IL-22-induced activation of STAT3 synergizes with NF-κB-activating cytokines to enhance LCN-2 expression in human IECs and elucidates how ILC3 are involved in LCN-2-mediated host defense against Enterobacteriaceae. Together, these results provide new insight into the role of ILC3 in regulating LCN-2 expression in human IECs and could prove useful in future studies aimed at understanding the host response against Enterobacteriaceae as well as for the development of antimicrobial therapies against Enterobacteriaceae-related infections.


Epithelial Cells/immunology , Interleukins/immunology , Intestinal Mucosa/immunology , Lipocalin-2/immunology , Lymphocytes/immunology , NF-kappa B/immunology , STAT3 Transcription Factor/immunology , Epithelial Cells/pathology , Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Female , Gene Expression Regulation/immunology , HCT116 Cells , Humans , Klebsiella Infections/immunology , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Lymphocytes/pathology , Male , Interleukin-22
9.
Eur J Immunol ; 49(6): 966-968, 2019 06.
Article En | MEDLINE | ID: mdl-30673129

It is a matter of current debate whether the bone marrow is a hub for circulating memory T lymphocytes and/or the home of resident memory T lymphocytes. Here we demonstrate for CD69+ murine CD8+ , and CD69+ murine and human CD4+ memory T lymphocytes of the bone marrow, making up between 30 and 60% of bone marrow memory T lymphocytes, that they express the gene expression signature of tissue-resident memory T lymphocytes. This suggests that a substantial proportion of bone marrow memory T lymphocytes are resident. It adds to previous evidence that bone marrow memory T cells are resting in terms of mobility and proliferation, and maintain exclusive long-term memory to distinct, systemic antigens.


Bone Marrow Cells/immunology , Immunologic Memory/immunology , Spleen/immunology , T-Lymphocyte Subsets/immunology , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Humans , Lectins, C-Type/immunology , Mice , Spleen/cytology , Transcriptome/immunology
10.
J Allergy Clin Immunol ; 143(6): 2202-2214.e5, 2019 06.
Article En | MEDLINE | ID: mdl-30578872

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and maintenance of type 2 immune responses. The prostaglandin (PG) D2-chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) receptor axis potently induces cytokine production and ILC2 migration. OBJECTIVE: We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. METHODS: The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. RESULTS: We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. CONCLUSION: PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.


Hypersensitivity/drug therapy , Lymphocytes/immunology , Prostaglandin D2/metabolism , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Carbazoles/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Cell Communication , Cells, Cultured , Cytokines/metabolism , Flurbiprofen/pharmacology , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Lipocalins/antagonists & inhibitors , Lymphocyte Activation , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Sulfonamides/pharmacology , Th2 Cells/immunology
11.
Science ; 359(6371): 36-37, 2018 01 05.
Article En | MEDLINE | ID: mdl-29302003
12.
J Allergy Clin Immunol ; 141(1): 279-292, 2018 01.
Article En | MEDLINE | ID: mdl-28433688

BACKGROUND: Vitamin D deficiency is a risk factor for inflammatory bowel disease (IBD). The IL-23-driven tissue-resident group 3 innate lymphoid cells (ILC3s) play essential roles in intestinal immunity, and targeting IL-23/12 is a promising approach in IBD therapy. OBJECTIVE: We set out to define the role of 1α,25-dihydroxy vitamin D3 (1,25D) in regulating functional responses of human mucosal ILC3s to IL-23 plus IL-1ß stimulation. METHODS: Transcriptomes of sorted tonsillar ILC3s were assessed by using microarray analysis. ILC3 cytokine production, proliferation, and differentiation were determined by means of flow cytometry, ELISA, and multiplex immunoassay. Intestinal cell suspensions and ILC3s sorted from gut biopsy specimens of patients with IBD were also analyzed along with plasma 25-hydroxy vitamin D3 (25D) detection. RESULTS: ILC3s stimulated with IL-23 plus IL-1ß upregulated the vitamin D receptor and responded to 1,25D with downregulation of the IL-23 receptor pathway. Consequently, 1,25D suppressed IL-22, IL-17F, and GM-CSF production from tonsillar and gut ILC3s. In parallel, 1,25D upregulated genes linked to the IL-1ß signaling pathway, as well as the IL-1ß-inducible cytokines IL-6, IL-8, and macrophage inflammatory protein 1α/ß. The 1,25D-triggered skewing in ILC3 function was not accompanied or caused by changes in viability, proliferation, or phenotype. Finally, we confirmed low 25D plasma levels in patients with IBD with active inflammation. CONCLUSION: In light of the beneficial targeting of IL-23/12 in patients with IBD, 1,25D appears as an interesting therapeutic agent that inhibits the IL-23 receptor pathway, providing a novel mechanism for how ILC3s could be manipulated to regulate intestinal inflammation.


Lymphocytes/immunology , Lymphocytes/metabolism , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Interleukin/metabolism , Signal Transduction/immunology , Vitamin D/pharmacology , Biomarkers , Cell Proliferation , Cell Survival/genetics , Cell Survival/immunology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism
13.
J Allergy Clin Immunol ; 141(5): 1761-1773.e6, 2018 05.
Article En | MEDLINE | ID: mdl-29217133

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are involved in the initial phase of type 2 inflammation and can amplify allergic immune responses by orchestrating other type 2 immune cells. Prostaglandin (PG) E2 is a bioactive lipid that plays protective roles in the lung, particularly during allergic inflammation. OBJECTIVE: We set out to investigate how PGE2 regulates human ILC2 function. METHODS: The effects of PGE2 on human ILC2 proliferation and intracellular cytokine and transcription factor expression were assessed by means of flow cytometry. Cytokine production was measured by using ELISA, and real-time quantitative PCR was performed to detect PGE2 receptor expression. RESULTS: PGE2 inhibited GATA-3 expression, as well as production of the type 2 cytokines IL-5 and IL-13, from human tonsillar and blood ILC2s in response to stimulation with a combination of IL-25, IL-33, thymic stromal lymphopoietin, and IL-2. Furthermore, PGE2 downregulated the expression of IL-2 receptor α (CD25). In line with this observation, PGE2 decreased ILC2 proliferation. These effects were mediated by the combined action of E-type prostanoid receptor (EP) 2 and EP4 receptors, which were specifically expressed on ILC2s. CONCLUSION: Our findings reveal that PGE2 limits ILC2 activation and propose that selective EP2 and EP4 receptor agonists might serve as a promising therapeutic approach in treating allergic diseases by suppressing ILC2 function.


Dinoprostone/immunology , Gene Expression Regulation/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Cells, Cultured , Cytokines/immunology , GATA3 Transcription Factor/immunology , Humans , Inflammation/immunology , Receptors, Prostaglandin E/immunology
...