Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162806

RESUMEN

Grain boundaries (GB) profoundly influence charge transport, and their localized potential barrier with a high density of defect states plays a crucial role in polycrystalline materials. There are a couple of models to estimate the density of states (DoS) of nanostructured materials in field-effect transistors (FETs) that probe interface traps between the semiconductor and dielectric but not at the grain boundaries. Here, we report on utilizing Levinson's and Seto's models of grain boundary transport and correlate them with the temperature-dependent hopping transport in copper iodide (CuI) polycrystalline nanoribbon (PNR) FETs. Experimentally, PNRs are obtained by e-beam lithography and thermal evaporation of CuI. To investigate the impact of GB, the devices are fabricated with different channel aspect ratios by varying widths (80, 260, and 570 nm) and lengths (20 to 90 µm). Owing to the high hole concentration, PNR FETs operate in depletion mode at 300 K. At various low temperatures (80-300 K), the figures-of-merits of FETs are estimated to understand device performance. We determine GB barrier heights, activation energy, and density of GB trap states and find equivalence between the two models. Furthermore, we calculate temperature-dependent hopping and trap-limited transport parameters to obtain DoS at the Fermi energy, trapped and free charge carrier density, localization length, hopping distance, hopping energy, etc. at various channel lengths. Based on this quantitative analysis, we propose a channel length-dependent GB barrier height variation due to the in-plane electric field and elucidate CuI energy band levels.

2.
Small ; 20(27): e2401131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38563587

RESUMEN

Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.

3.
ACS Omega ; 9(8): 9137-9146, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434843

RESUMEN

In the contemporary way of life, face masks are crucial in managing disease transmission and battling air pollution. However, two key challenges, self-sanitization and biodegradation of face masks, need immediate attention, prompting the development of innovative solutions for the future. In this study, we present a novel approach that combines controlled acid hydrolysis and mechanical chopping to synthesize a silk nanofibrous network (SNN) seamlessly integrated with a wearable stainless steel mesh, resulting in the fabrication of self-sanitizable face masks. The distinct architecture of face masks showcases remarkable filtration efficiencies of 91.4, 95.4, and 98.3% for PM0.3, PM0.5, and PM1.0, respectively, while maintaining a comfortable level of breathability (ΔP = 92 Pa). Additionally, the face mask shows that a remarkable thermal resistance of 472 °C cm2 W-1 generates heat spontaneously at low voltage, deactivating Escherichia coli bacteria on the SNN, enabling self-sanitization. The SNN exhibited complete disintegration within the environment in just 10 days, highlighting the remarkable biodegradability of the face mask. The unique advantage of self-sanitization and biodegradation in a face mask filter is simultaneously achieved for the first time, which will open avenues to accomplish environmentally benign next-generation face masks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA