Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 13(7): 2, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949633

RESUMEN

Purpose: We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor ß2 (TGFß2)-induced lens opacity. Methods: To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFß2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFß2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results: In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFß2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFß2. Conclusions: Our results indicate that GDF-15 could alleviate TGFß2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance: Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.


Asunto(s)
Catarata , Transición Epitelial-Mesenquimal , Factor 15 de Diferenciación de Crecimiento , Cristalino , Factor de Crecimiento Transformador beta2 , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Catarata/patología , Catarata/metabolismo , Catarata/prevención & control , Ratones , Cristalino/metabolismo , Cristalino/patología , Cristalino/efectos de los fármacos , Ratones Endogámicos C57BL , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Western Blotting , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/metabolismo
2.
Chem Biol Interact ; 389: 110856, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185272

RESUMEN

Neurodegeneration is a complex process involving various inflammatory mediators and cellular responses. Aldose reductase (AR) is a key enzyme in the polyol pathway, which converts glucose to sorbitol. Beyond its metabolic role, AR has also been found to play a significant role in modulating neuroinflammation. This review aims to provide an overview of the current knowledge regarding the involvement of AR inhibition in attenuating neuroinflammation and complications from diabetic neuropathies. Here, we review the literature regarding AR and neuropathy/neurodegeneration. We discuss the mechanisms underlying the influence of AR inhibitors on ocular inflammation, beta-amyloid-induced neurodegeneration, and optic nerve degeneration. Furthermore, potential therapeutic strategies targeting AR in neurodegeneration are explored. The understanding of AR's role in neurodegeneration may lead to the development of novel therapeutic interventions for other neuroinflammatory disorders.


Asunto(s)
Aldehído Reductasa , Neuropatías Diabéticas , Humanos , Aldehído Reductasa/metabolismo , Enfermedades Neuroinflamatorias , Neuropatías Diabéticas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inflamación/tratamiento farmacológico
3.
Sci Rep ; 13(1): 5592, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019993

RESUMEN

As part of the central nervous system (CNS), retinal ganglion cells (RGCs) and their axons are the only neurons in the retina that transmit visual signals from the eye to the brain via the optic nerve (ON). Unfortunately, they do not regenerate upon injury in mammals. In ON trauma, retinal microglia (RMG) become activated, inducing inflammatory responses and resulting in axon degeneration and RGC loss. Since aldose reductase (AR) is an inflammatory response mediator highly expressed in RMG, we investigated if pharmacological inhibition of AR can attenuate ocular inflammation and thereby promote RGC survival and axon regeneration after ON crush (ONC). In vitro, we discovered that Sorbinil, an AR inhibitor, attenuates BV2 microglia activation and migration in the lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) treatments. In vivo, Sorbinil suppressed ONC-induced Iba1 + microglia/macrophage infiltration in the retina and ON and promoted RGC survival. Moreover, Sorbinil restored RGC function and delayed axon degeneration one week after ONC. RNA sequencing data revealed that Sorbinil protects the retina from ONC-induced degeneration by suppressing inflammatory signaling. In summary, we report the first study demonstrating that AR inhibition transiently protects RGC and axon from degeneration, providing a potential therapeutic strategy for optic neuropathies.


Asunto(s)
Atrofia Óptica , Traumatismos del Nervio Óptico , Animales , Microglía , Axones/fisiología , Aldehído Reductasa , Regeneración Nerviosa , Retina , Traumatismos del Nervio Óptico/patología , Atrofia Óptica/patología , Degeneración Nerviosa/patología , Mamíferos
4.
Nat Commun ; 12(1): 3448, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103496

RESUMEN

Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.


Asunto(s)
Replicación del ADN , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclopentanos/farmacología , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Genoma Humano , Humanos , Mitosis/efectos de los fármacos , Modelos Biológicos , Pirimidinas/farmacología , Origen de Réplica/genética
5.
Prog Retin Eye Res ; 85: 100969, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33901682

RESUMEN

Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Animales , Ceguera , Mamíferos , Retina
6.
Dev Biol ; 427(1): 35-48, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28502613

RESUMEN

Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis.


Asunto(s)
Movimiento Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Tráquea/metabolismo , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Hipoxia , Hibridación in Situ , Larva/genética , Larva/metabolismo , Microscopía Confocal , Técnicas de Cultivo de Órganos , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de Tiempo/métodos , Tráquea/citología , Tráquea/embriología
7.
Nat Commun ; 7: 11748, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27272143

RESUMEN

Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Mamíferos/metabolismo , Origen de Réplica , Animales , Secuencia de Bases , Línea Celular , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Sitios Genéticos , Genoma , Humanos , Región de Control de Posición , Ratones , Modelos Biológicos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA