Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Rev ; 124(5): 2081-2137, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38393351

RESUMEN

Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.


Asunto(s)
Polímeros , Dispositivos Electrónicos Vestibles , Humanos
2.
Front Microbiol ; 14: 1277709, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029179

RESUMEN

In this study, a highly promising bacterium was isolated from sandstone oil in the Ordos Basin, named strain NS-6 which exhibited exceptional urease production ability and demonstrated superior efficiency in inducing the deposition of calcium carbonate (CaCO3). Through morphological and physiochemical characteristics analysis, as well as 16S rRNA sequencing, strain NS-6 was identified as Neobacillus mesonae. The activity of urease and the formation of CaCO3 increased over time, reaching a maximum of 7.9 mmol/L/min and 184 mg (4.60 mg/mL) respectively at 32 h of incubation. Scanning Electron Microscopy (SEM) revealed CaCO3 crystals ranging in size from 5 to 6 µm, and Energy Dispersive X-ray (EDX) analysis verified the presence of calcium, carbon, and oxygen within the crystals. X-ray Diffraction (XRD) analysis further confirmed the composition of these CaCO3 crystals as calcite and vaterite. Furthermore, the maximum deposition of CaCO3 by strain NS-6 was achieved using response surface methodology (RSM), amounting to 193.8 mg (4.845 mg/mL) when the concentration of calcium ions was 0.5 mmol/L supplemented with 0.9 mmol/L of urea at pH 8.0. Genome-wide analysis revealed that strain NS-6 possesses a chromosome of 5,736,360 base pairs, containing 5,442 predicted genes, including 3,966 predicted functional genes and 1,476 functionally unknown genes. Genes like ureA, ureB, and ureC related to urea catabolism were identified by gene annotation, indicating that strain NS-6 is a typical urease-producing bacterium and possesses a serial of genes involved in metabolic pathways that mediated the deposition of CaCO3 at genetic level.

3.
Nat Commun ; 14(1): 6494, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838683

RESUMEN

Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life. Here, we address these constraints by design of an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). The TPP electrode offers superior stretchability (~200%) and adhesiveness (0.58 N/cm) compared to current electrodes, ensuring stable and long-term contact with the skin for recording (>20 dB; >5 days). In addition, we developed a metal-polymer electrode array patch (MEAP) comprising liquid metal (LM) circuits and TPP electrodes. The MEAP demonstrated better conformability than commercial arrays, resulting in higher signal-to-noise ratio and more stable recordings during muscle movements. Manufactured using scalable screen-printing, these MEAPs feature a completely stretchable material and array architecture, enabling real-time monitoring of muscle stress, fatigue, and tendon displacement. Their potential to reduce muscle and tendon injuries and enhance performance in daily exercise and professional sports holds great promise.


Asunto(s)
Músculos , Piel , Electromiografía/métodos , Electrodos , Tendones , Polímeros
4.
J Appl Genet ; 64(2): 351-360, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36892794

RESUMEN

Stenotrophomonas maltophilia is a species with immensely broad phenotypic and genotypic diversity that could widely distribute in natural and clinical environments. However, little attention has been paid to reveal their genome plasticity to diverse environments. In the present study, a comparative genomic analysis of S. maltophilia isolated from clinical and natural sources was systematically explored its genetic diversity of 42 sequenced genomes. The results showed that S. maltophilia owned an open pan-genome and had strong adaptability to different environments. A total of 1612 core genes were existed with an average of 39.43% of each genome, and the shared core genes might be necessary to maintain the basic characteristics of those S. maltophilia strains. Based on the results of the phylogenetic tree, the ANI value, and the distribution of accessory genes, genes associated with the fundamental process of those strains from the same habitat were found to be mostly conserved in evolution. Isolates from the same habitat had a high degree of similarity in COG category, and the most significant KEGG pathways were mainly involved in carbohydrate and amino acid metabolism, indicating that genes related to essential processes were mostly conserved in evolution for the clinical and environmental settings. Meanwhile, the number of resistance and efflux pump gene was significantly higher in the clinical setting than that of in the environmental setting. Collectively, this study highlights the evolutionary relationships of S. maltophilia isolated from clinical and environmental sources, shedding new light on its genomic diversity.


Asunto(s)
Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Filogenia , Fenotipo , Genómica , Variación Genética
5.
Ecotoxicol Environ Saf ; 251: 114551, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669280

RESUMEN

Crude oil pollution is environmentally ubiquitous and has become a global public concern about its impact on human health. Asphaltenes are the key components of heavy crude oil (HCO) that are underutilized due to their high viscosity and density, and yet, the associated information about biodegradation is extremely limited in the literature. In the present study, an indigenous bacterium with effective asphaltene-degrading activity was isolated from oil shale and identified as Pseudomonas stutzeri by a polyphasic taxonomic approach, named YWX-1. Supplemented with 75 g L-1 heavy crude oil as the sole carbon source for growth in basic mineral salts liquid medium (MSM), strain YWX-1 was able to remove 49% of asphaletene fractions within 14 days, when it was cultivated with an initial inoculation size of 1%. During the degradation process, the bioemulsifier produced by strain YWX-1 could emulsify HCO obviously into particles, as well as it had the ability to solubilize asphaletenes. The bioemulsifier was identified to be a mixture of polysaccharide and protein through Fourier transform infrared spectroscopy (FT-IR). The genome of strain YWX-1 contains one circular chromosome of 4488441 bp with 63.98% GC content and 4145 protein coding genes without any plasmid. Further genome annotation indicated that strain YWX-1 possesses a serial of genes involved in bio-emulsification and asphaltenes biodegradation. This work suggested that P. stutzeri YWX-1 could be a promising species for bioremediation of HCO and its genome analysis provided insight into the molecular basis of asphaltene biodegradation and bioemulsifier production.


Asunto(s)
Petróleo , Pseudomonas stutzeri , Humanos , Biodegradación Ambiental , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Petróleo/análisis , Minerales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...