Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Nat Cell Biol ; 26(3): 464-477, 2024 Mar.
Article En | MEDLINE | ID: mdl-38321204

Leukaemia stem cells (LSCs) in acute myeloid leukaemia present a considerable treatment challenge due to their resistance to chemotherapy and immunosurveillance. The connection between these properties in LSCs remains poorly understood. Here we demonstrate that inhibition of tyrosine phosphatase SHP-1 in LSCs increases their glycolysis and oxidative phosphorylation, enhancing their sensitivity to chemotherapy and vulnerability to immunosurveillance. Mechanistically, SHP-1 inhibition leads to the upregulation of phosphofructokinase platelet (PFKP) through the AKT-ß-catenin pathway. The increase in PFKP elevates energy metabolic activities and, as a consequence, enhances the sensitivity of LSCs to chemotherapeutic agents. Moreover, the upregulation of PFKP promotes MYC degradation and, consequently, reduces the immune evasion abilities of LSCs. Overall, our study demonstrates that targeting SHP-1 disrupts the metabolic balance in LSCs, thereby increasing their vulnerability to chemotherapy and immunosurveillance. This approach offers a promising strategy to overcome LSC resistance in acute myeloid leukaemia.


Leukemia, Myeloid, Acute , Metabolic Reprogramming , Humans , Monitoring, Immunologic , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Stem Cells , Neoplastic Stem Cells/metabolism
2.
bioRxiv ; 2023 May 08.
Article En | MEDLINE | ID: mdl-37214873

Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.

3.
bioRxiv ; 2023 May 09.
Article En | MEDLINE | ID: mdl-37214906

Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as "mad itch" in multiple species. The underlying mechanisms involved in neuropathic "mad itch" are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and "mad itch" in mice. This neuropathic "mad itch" is propagated through activation of the opioid system making the animals "addicted to itch". Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity.

4.
Brief Bioinform ; 24(1)2023 01 19.
Article En | MEDLINE | ID: mdl-36575567

Long noncoding ribonucleic acids (RNAs; LncRNAs) endowed with both protein-coding and noncoding functions are referred to as 'dual functional lncRNAs'. Recently, dual functional lncRNAs have been intensively studied and identified as involved in various fundamental cellular processes. However, apart from time-consuming and cell-type-specific experiments, there is virtually no in silico method for predicting the identity of dual functional lncRNAs. Here, we developed a deep-learning model with a multi-head self-attention mechanism, LncReader, to identify dual functional lncRNAs. Our data demonstrated that LncReader showed multiple advantages compared to various classical machine learning methods using benchmark datasets from our previously reported cncRNAdb project. Moreover, to obtain independent in-house datasets for robust testing, mass spectrometry proteomics combined with RNA-seq and Ribo-seq were applied in four leukaemia cell lines, which further confirmed that LncReader achieved the best performance compared to other tools. Therefore, LncReader provides an accurate and practical tool that enables fast dual functional lncRNA identification.


RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/chemistry , RNA-Seq
5.
Nat Commun ; 13(1): 7335, 2022 11 28.
Article En | MEDLINE | ID: mdl-36443325

Type 2 diabetes mellitus is one of the most prevalent metabolic diseases presenting with systemic pathologies, including reproductive disorders in male diabetic patients. However, the molecular mechanisms that contributing to spermatogenesis dysfunction in diabetic patients have not yet been fully elucidated. Here, we perform STRT-seq to examine the transcriptome of diabetic patients' testes at single-cell resolution including all major cell types of the testis. Intriguingly, whereas spermatogenesis appears largely preserved, the gene expression profiles of Sertoli cells and the blood-testis barrier (BTB) structure are dramatically impaired. Among these deregulate pathways, the Apelin (APLN) peptide/Apelin-receptor (APJ) axis is hyper-activated in diabetic patients' testes. Mechanistically, APLN is produced locally by Sertoli cells upon high glucose treatment, which subsequently suppress the production of carnitine and repress the expression of cell adhesion genes in Sertoli cells. Together, these effects culminate in BTB structural dysfunction. Finally, using the small molecule APLN receptor antagonist, ML221, we show that blocking APLN/APJ significantly ameliorate the BTB damage and, importantly, improve functional spermatogenesis in diabetic db/db mice. We also translate and validate these findings in cultured human testes. Our findings identify the APLN/APJ axis as a promising therapeutic target to improve reproduction capacity in male diabetic patients.


Blood-Testis Barrier , Diabetes Mellitus, Type 2 , Animals , Humans , Male , Mice , Apelin , Apelin Receptors/genetics , Spermatogenesis , Testis
6.
Immunobiology ; 227(6): 152296, 2022 11.
Article En | MEDLINE | ID: mdl-36327543

Aerobic exercise is well recognized to be beneficial to physical and mental health. Many studies have shown that aerobic exercise can improve the human immune system, but whether it could affect lung regeneration and inflammation remained unclear. Bronchioloalveolar stem cells (BASCs) play a key role in lung regeneration and repair, but it is unclear whether aerobic exercise affects BASCs. Here, we randomly divided 8 weeks old male mice into three groups: the control group without any aerobic exercise; the rest group which received 2 weeks of aerobic exercise (running wheel training) plus 5 days' rest, and the exercise group which received 2 weeks of aerobic exercise without any rest. Our data indicated that mice in the exercise group had significantly increased BASCs compared to the control group, such difference did not exist in the rest group. Furthermore, the immune profiling suggested that lung inflammation was slightly up-regulated in the exercise group, particularly the inflammatory monocytes and IL-17A+ T cells. In conclusion, we provide direct evidence showing that aerobic exercise can facilitate lung regeneration with mild inflammatory effect, this finding is of great importance in the current COVID-19 pandemic.


COVID-19 , Pandemics , Mice , Humans , Male , Animals , Lung , Inflammation , Regeneration
7.
Sci Transl Med ; 14(660): eabj1531, 2022 08 31.
Article En | MEDLINE | ID: mdl-36044597

Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.


Lung Neoplasms , Neuralgia , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Biopterins/analogs & derivatives , ErbB Receptors/genetics , ErbB Receptors/metabolism , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Neuralgia/drug therapy , Neuralgia/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
8.
Nat Cell Biol ; 24(8): 1278-1290, 2022 08.
Article En | MEDLINE | ID: mdl-35927451

METTL3 encodes the predominant catalytic enzyme to promote m6A methylation in nucleus. Recently, accumulating evidence has shown the expression of METTL3 in cytoplasm, but its function is not fully understood. Here we demonstrated an m6A-independent mechanism for METTL3 to promote tumour progression. In gastric cancer, METTL3 could not only facilitate cancer progression via m6A modification, but also bind to numerous non-m6A-modified mRNAs, suggesting an unexpected role of METTL3. Mechanistically, cytoplasm-anchored METTL3 interacted with PABPC1 to stabilize its association with cap-binding complex eIF4F, which preferentially promoted the translation of epigenetic factors without m6A modification. Clinical investigation showed that cytoplasmic distributed METTL3 was highly correlated with gastric cancer progression, and this finding could be expanded to prostate cancer. Therefore, the cytoplasmic METTL3 enhances the translation of epigenetic mRNAs, thus serving as an oncogenic driver in cancer progression, and METTL3 subcellular distribution can assist diagnosis and predict prognosis for patients with cancer.


Methyltransferases , Stomach Neoplasms , Adenosine/metabolism , Carcinogenesis/genetics , Epigenesis, Genetic , Humans , Male , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stomach Neoplasms/genetics
9.
Cancer Med ; 11(19): 3700-3713, 2022 10.
Article En | MEDLINE | ID: mdl-35608274

BACKGROUND: Esophageal carcinoma is one of the most fatal cancers worldwide. In China, over 90% of esophageal cancer patients are diagnosed with esophageal squamous cell carcinoma (ESCC). Currently, the survival and prognosis of ESCC patients are not satisfying because of insufficient early screening and lack of efficacious medication. Accumulating studies have suggested that antibody-drug conjugates (ADC) represent a promising antitumor strategy. METHOD: Here, we carried out a specific membrane proteome screening with ESCC patients' samples using a high-throughput antibody microarray to uncover potential targets for ADC development. Candidates were validated with expression and cytotoxicity evaluation both in vitro and in vivo. RESULTS: Our data have shown that the Piezo-Type Mechanosensitive Ion Channel Component 1 (PIEZO1) is particularly overexpressed in human ESCC tumors and can be efficiently internalized when bound with its monoclonal antibody. Furthermore, the PIEZO1 antibody combined with monomethyl auristatin E (MMAE) can specifically kill PIEZO1 high-expressed ESCC tumor cells by inducing cell cycle arrest and apoptosis. More importantly, the Anti-PIEZO1-MMAE can significantly suppress tumor progression in ESCC xenograft tumor models without any obvious side effects. CONCLUSION: Taken together, our work demonstrates that PIEZO1 is a promising target to develop ADCs for human ESCC treatment, providing a new strategy for ESCC patients' personalized therapy.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunoconjugates , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Ion Channels , Proteome/metabolism , Xenograft Model Antitumor Assays
10.
Genome Biol ; 22(1): 290, 2021 10 14.
Article En | MEDLINE | ID: mdl-34649616

BACKGROUND: Cellular RNA-binding proteins (RBPs) have multiple roles in post-transcriptional control, and some are shown to bind DNA. However, the global localization and the general chromatin-binding ability of RBPs are not well-characterized and remain undefined in hematopoietic cells. RESULTS: We first provide a full view of RBPs' distribution pattern in the nucleus and screen for chromatin-enriched RBPs (Che-RBPs) in different human cells. Subsequently, by generating ChIP-seq, CLIP-seq, and RNA-seq datasets and conducting combined analysis, the transcriptional regulatory potentials of certain hematopoietic Che-RBPs are predicted. From this analysis, quaking (QKI5) emerges as a potential transcriptional activator during monocytic differentiation. QKI5 is over-represented in gene promoter regions, independent of RNA or transcription factors. Furthermore, DNA-bound QKI5 activates the transcription of several critical monocytic differentiation-associated genes, including CXCL2, IL16, and PTPN6. Finally, we show that the differentiation-promoting activity of QKI5 is largely dependent on CXCL2, irrespective of its RNA-binding capacity. CONCLUSIONS: Our study indicates that Che-RBPs are versatile factors that orchestrate gene expression in different cellular contexts, and identifies QKI5, a classic RBP regulating RNA processing, as a novel transcriptional activator during monocytic differentiation.


Cell Differentiation/genetics , Chromatin/metabolism , Monocytes/metabolism , RNA-Binding Proteins/metabolism , Transcriptional Activation , Cell Line , Chemokine CXCL2 , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Mutation , Promoter Regions, Genetic , RNA-Binding Proteins/genetics , Transcriptome
11.
Nucleic Acids Res ; 49(15): 8520-8534, 2021 09 07.
Article En | MEDLINE | ID: mdl-34331449

With the dramatic development of single-cell RNA sequencing (scRNA-seq) technologies, the systematic decoding of cell-cell communication has received great research interest. To date, several in-silico methods have been developed, but most of them lack the ability to predict the communication pathways connecting the insides and outsides of cells. Here, we developed CellCall, a toolkit to infer inter- and intracellular communication pathways by integrating paired ligand-receptor and transcription factor (TF) activity. Moreover, CellCall uses an embedded pathway activity analysis method to identify the significantly activated pathways involved in intercellular crosstalk between certain cell types. Additionally, CellCall offers a rich suite of visualization options (Circos plot, Sankey plot, bubble plot, ridge plot, etc.) to present the analysis results. Case studies on scRNA-seq datasets of human testicular cells and the tumor immune microenvironment demonstrated the reliable and unique functionality of CellCall in intercellular communication analysis and internal TF activity exploration, which were further validated experimentally. Comparative analysis of CellCall and other tools indicated that CellCall was more accurate and offered more functions. In summary, CellCall provides a sophisticated and practical tool allowing researchers to decipher intercellular communication and related internal regulatory signals based on scRNA-seq data. CellCall is freely available at https://github.com/ShellyCoder/cellcall.


Cell Communication/genetics , RNA, Small Cytoplasmic/genetics , Single-Cell Analysis , Transcription Factors , Algorithms , Base Sequence/genetics , Computational Biology , Gene Expression Regulation/genetics , Humans , Ligands , Sequence Analysis, RNA , Transcription Factors/genetics
12.
Transl Lung Cancer Res ; 10(2): 926-935, 2021 Feb.
Article En | MEDLINE | ID: mdl-33718033

BACKGROUND: Combining different cancer treatments represents a promising strategy to improve the therapeutic outcome for lung cancer patients with or without druggable gene alterations. METHODS: We previously developed a polyethylene glycol-based (PEG-based) immunostimulatory nanocarrier (PEG2k-Fmoc-NLG919) which can efficiently co-deliver an indoleamine 2,3-dioxygenase-1 (IDO1) inhibitor and the chemotherapeutic agent, paclitaxel. This method was found to improve cancer therapy by simultaneously performing immuno- and chemo-therapy. However, whether this nanocarrier could deliver targeted drugs to implement targeted therapy together with immunotherapy remains unclear. RESULTS: Here, we report that the delivery of the classical tyrosine kinase inhibitor (TKI), gefitinib, with the optimized PEG5k-Fmoc-NLG919 nanocarrier, increased the sensitivity of lung cancer cells to gefitinib in vitro. Gefitinib was gradually but sufficiently released from the nanocarrier with comparable capacity to inhibit epidermal growth factor receptor (EGFR) activity as using free gefitinib directly. More importantly, treatment with gefitinib-loaded PEG5k-Fmoc-NLG919 could suppress lung tumor development more efficiently than gefitinib alone in vivo by inducing an immune active microenvironment with more functional CD8+ T cells and less regulatory T cell infiltration. CONCLUSIONS: Our study therefore demonstrates that delivery of small molecular targeted drugs with the immunostimulatory nanocarrier is a straightforward strategy for improving antitumor response for lung cancer therapy.

13.
Theranostics ; 11(10): 5010-5027, 2021.
Article En | MEDLINE | ID: mdl-33754041

Background: Autophagy has been implicated as a crucial component in spermatogenesis, and autophagy dysfunction can lead to reproductive disorders in animal models, including yeast, C. elegans and mice. However, the sophisticated transcriptional networks of autophagic genes throughout human spermatogenesis and their biological significance remain largely uncharacterized. Methods: We profiled the transcriptional signatures of autophagy-related genes during human spermatogenesis by assessing specimens from nine fertile controls (including two normal persons and seven obstructive azoospermia (OA) patients) and one nonobstructive azoospermia (NOA) patient using single-cell RNA sequencing (scRNA-seq) analysis. Dysregulation of autophagy was confirmed in two additional NOA patients by immunofluorescence staining. Gene knockdown was used to identify the role of Cst3 in autophagy during spermatogenesis. Results: Our data uncovered a unique, global stage-specific enrichment of autophagy-related genes. Human-mouse comparison analysis revealed that the stage-specific expression pattern of autophagy-related genes was highly conserved in mammals. More importantly, dysregulation of some clusters of autophagy-related genes was observed in NOA patients, suggesting the association of autophagy with male infertility. Cst3, a human-mouse conserved and autophagy-related gene that is actively expressed in spermatogonia and early spermatocytes, was found to regulate spermatogonial stem cell (SSC) maintenance and subsequent male germ cell development. Knockdown of Cst3 increased autophagic activity in mouse SSCs and subsequently suppressed the transcription of SSC core factors such as Oct4, Id1, and Nanos3, which could be efficiently rescued by manipulating autophagic activity. Conclusions: Our study provides comprehensive insights into the global transcriptional signatures of autophagy-related genes and confirms the importance of autophagy homeostasis in SSC maintenance and normal spermatogenesis, opening new avenues for further dissecting the significance of the autophagy regulatory network in spermatogenesis as well as male infertility.


Autophagy/genetics , Azoospermia/genetics , Cystatin C/genetics , Spermatogenesis/genetics , Adult , Adult Germline Stem Cells/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Gene Regulatory Networks , Humans , Male , Meiosis/genetics , Middle Aged , RNA-Seq , Single-Cell Analysis , Vas Deferens
14.
Cancer Res ; 81(10): 2651-2665, 2021 05 15.
Article En | MEDLINE | ID: mdl-32788173

N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals that regulates homeostasis and function of modified RNA transcripts. Here, we aimed to investigate the role of YTH m6A RNA-binding protein 1 (YTHDF1), a key regulator of m6A methylation in gastric cancer tumorigenesis. Multiple bioinformatic analyses of different human cancer databases identified key m6A-associated genetic mutations that regulated gastric tumorigenesis. YTHDF1 was mutated in about 7% of patients with gastric cancer, and high expression of YTHDF1 was associated with more aggressive tumor progression and poor overall survival. Inhibition of YTHDF1 attenuated gastric cancer cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of a key Wnt receptor frizzled7 (FZD7) in an m6A-dependent manner, and mutated YTHDF1 enhanced expression of FZD7, leading to hyperactivation of the Wnt/ß-catenin pathway and promotion of gastric carcinogenesis. Our results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/ß-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease. SIGNIFICANCE: This study provides a rationale for controlling translation of key oncogenic drivers in cancer by manipulating epigenetic regulators, representing a novel and efficient strategy for anticancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2651/F1.large.jpg.


Carcinogenesis/pathology , DNA Methylation , Frizzled Receptors/metabolism , Gene Expression Regulation, Neoplastic , Protein Biosynthesis , RNA-Binding Proteins/metabolism , Stomach Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Proliferation , Frizzled Receptors/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Prognosis , RNA-Binding Proteins/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Survival Rate , Tumor Cells, Cultured , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , beta Catenin/genetics , beta Catenin/metabolism
15.
Front Oncol ; 10: 1727, 2020.
Article En | MEDLINE | ID: mdl-33014854

Esophageal cancer (EC) is the seventh most common cancer worldwide with over 570,000 new cases annually. In China, the incidence of EC is particularly high where approximately 90% of cases are defined as esophageal squamous cell carcinoma (ESCC). Although various risk factors have been identified, the knowledge of genetic drivers for ESCC is still limited due to high mutational loading of the cancer and lack of appropriate EC models, resulting in inadequate treatment choices for EC patients. Currently, surgery, chemotherapy, radiation, and limited targeted therapy options can only bring dismal survival advantages; thus, the prognosis for ESCC is very poor. However, cancer immunotherapy has unleashed a new era of cancer treatment with extraordinary therapeutic benefits for cancer patients, including EC patients. This review discusses the latest understanding of the risk factors and clinical rational for EC treatment and provides accumulated information, which describes the ongoing development of immunotherapy for EC with a specific emphasis on ESCC, the most prevalent EC subtype in the Chinese population.

16.
Cancer Cell Int ; 20: 423, 2020.
Article En | MEDLINE | ID: mdl-32884446

[This corrects the article DOI: 10.1186/s12935-019-1045-1.].

17.
Cancer Res ; 80(14): 3009-3022, 2020 07 15.
Article En | MEDLINE | ID: mdl-32366477

HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here, we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D -driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D -driven lung tumors in Hace1-/- mice. In patients with lung cancer, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, whereas elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development. SIGNIFICANCE: These findings reveal that mutation of the tumor suppressor HACE1 disrupts its role as a regulator of the oncogenic activity of RAC-family GTPases in human and murine lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/3009/F1.large.jpg.


Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/prevention & control , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , rac GTP-Binding Proteins/antagonists & inhibitors , rac1 GTP-Binding Protein/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinogenesis/pathology , Cell Proliferation , Humans , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Prognosis , Tumor Cells, Cultured , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination , RAC2 GTP-Binding Protein
18.
Acta Pharm Sin B ; 10(2): 276-288, 2020 Feb.
Article En | MEDLINE | ID: mdl-32082973

Psoriasis is characterized by abnormal proliferation of keratinocytes, as well as infiltration of immune cells into the dermis and epidermis, causing itchy, scaly and erythematous plaques of skin. The understanding of this chronic inflammatory skin disease remains unclear and all available treatments have their limitations currently. Here, we showed that IMMH002, a novel orally active S1P1 modulator, desensitized peripheral pathogenic lymphocytes to egress signal from secondary lymphoid organs and thymus. Using different psoriasis animal models, we demonstrated that IMMH002 could significantly relieve skin damage as revealed by PASI score and pathological injure evaluation. Mechanistically, IMMH002 regulated CD3+ T lymphocytes re-distribution by inducing lymphocytes' homing, thus decreased T lymphocytes allocation in the peripheral blood and skin but increased in the thymus. Our results suggest that the novel S1P1 agonist, IMMH002, exert extraordinary capacity to rapidly modulate T lymphocytes distribution, representing a promising drug candidate for psoriasis treatment.

19.
Nucleic Acids Res ; 48(7): 3816-3831, 2020 04 17.
Article En | MEDLINE | ID: mdl-31996915

N 6-Methyladenosine (m6A) is the most abundant RNA modification in mammal mRNAs and increasing evidence suggests the key roles of m6A in human tumorigenesis. However, whether m6A, especially its 'reader' YTHDF1, targets a gene involving in protein translation and thus affects overall protein production in cancer cells is largely unexplored. Here, using multi-omics analysis for ovarian cancer, we identified a novel mechanism involving EIF3C, a subunit of the protein translation initiation factor EIF3, as the direct target of the YTHDF1. YTHDF1 augments the translation of EIF3C in an m6A-dependent manner by binding to m6A-modified EIF3C mRNA and concomitantly promotes the overall translational output, thereby facilitating tumorigenesis and metastasis of ovarian cancer. YTHDF1 is frequently amplified in ovarian cancer and up-regulation of YTHDF1 is associated with the adverse prognosis of ovarian cancer patients. Furthermore, the protein but not the RNA abundance of EIF3C is increased in ovarian cancer and positively correlates with the protein expression of YTHDF1 in ovarian cancer patients, suggesting modification of EIF3C mRNA is more relevant to its role in cancer. Collectively, we identify the novel YTHDF1-EIF3C axis critical for ovarian cancer progression which can serve as a target to develop therapeutics for cancer treatment.


Eukaryotic Initiation Factor-3/genetics , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/genetics , Protein Biosynthesis , RNA-Binding Proteins/metabolism , Adenosine/analogs & derivatives , Animals , Carcinogenesis , Cell Line , Cell Line, Tumor , Cell Movement , Cell Proliferation , Eukaryotic Initiation Factor-3/biosynthesis , Female , Humans , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Oncogenes , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/physiology
20.
Cancer Cell Int ; 19: 321, 2019.
Article En | MEDLINE | ID: mdl-31827395

BACKGROUND: Since FTO was recognized as the first m6A demethylase, the understanding of its biological function has been widely expanded. However, the role of FTO in cervical cancer tumorigenesis remains unclear. METHODS: In this study, we first analyzed the expression of FTO in two independent human cancer datasets and evaluated the correlation between FTO level and cervical cancer progression. Using small hairpin RNA technology, we explored the function of FTO in cervical cancer cell line Hela and SiHa cells, respectively. We then determined the FTO targets by performing transcriptional profile with FTO deficient and competent Hela cells, and finally validated these targets with ribosome profiling and functional rescue experiments. RESULTS: Our data suggested that FTO was frequently overexpressed in human cervical cancer tissues and highly correlated with cervical cancer progression. FTO serves as an oncogenic regulator for cervical cancer cells' proliferation and migration which is vastly depended on its demethylase activity. Mechanistically, FTO interacts with transcripts of E2F1 and Myc, inhibition of FTO significantly impairs the translation efficiency of E2F1 and Myc, however, either overexpress E2F1 or Myc sufficiently compensates the FTO deficiency which decreases cell proliferation and migration. CONCLUSIONS: Our study indicates that FTO plays important oncogenic role in regulating cervical cancer cells' proliferation and migration via controlling m6A modification of E2F1 and Myc transcripts. FTO represents a potential drug candidate for cervical cancer therapy.

...