Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337972

RESUMEN

Lycium chinense, a type of medicinal and edible plant, is rich in bioactive compounds beneficial to human health. In order to meet the market requirements for the yield and quality of L. chinense, polyploid induction is usually an effective way to increase plant biomass and improve the content of bioactive components. This study established the most effective tetraploid induction protocol by assessing various preculture durations, colchicine concentrations, and exposure times. The peak tetraploid induction efficacy, 18.2%, was achieved with a 12-day preculture and 24-h exposure to 50 mg L-1 colchicine. Compared to diploids, tetraploids exhibited potentially advantageous characteristics such as larger leaves, more robust stems, and faster growth rates. Physiologically, tetraploids demonstrated increased stomatal size and chloroplast count in stomata but reduced stomatal density. Nutrient analysis revealed a substantial increase in polysaccharides, calcium, iron, and zinc in tetraploid leaves. In addition, seventeen carotenoids were identified in the leaves of L. chinense. Compared to the diploid, lutein, ß-carotene, neoxanthin, violaxanthin, and (E/Z)-phytoene exhibited higher levels in tetraploid strains T39 and T1, with T39 demonstrating a greater accumulation than T1. The findings suggest that the generated tetraploids harbor potential for further exploitation and lay the foundation for the selection and breeding of novel genetic resources of Lycium.

2.
J Exp Bot ; 74(1): 443-457, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260345

RESUMEN

Drought, which directly affects the yield of crops and trees, is a natural stress with a profound impact on the economy. Improving water use efficiency (WUE) and drought tolerance are relatively effective strategies to alleviate drought stress. OPEN STOMATA1 (OST1), at the core of abscisic acid (ABA) signaling, can improve WUE by regulating stomatal closure and photosynthesis. Methyl jasmonate (MeJA) and ABA crosstalk is considered to be involved in the response to drought stress, but the detailed molecular mechanism is insufficiently known. Here, Populus euphratica, which naturally grows in arid and semiarid regions, was selected as the species for studying MeJA and ABA crosstalk under drought. A yeast two-hybrid assay was performed using PeOST1 as bait and a nucleus-localized factor, JASMONATE ZIM-domain protein 2 (PeJAZ2), was found to participate in MeJA signaling by interacting with PeOST1. Overexpression of PeJAZ2 in poplar notably increased water deficit tolerance and WUE in both severe and mild drought stress by regulating ABA signaling rather than ABA synthesis. Furthermore, a PeJAZ2 overexpression line was shown to have greater ABA-induced stomatal closure and hydrogen peroxide (H2O2) production. Collectively, this evidence establishes a mechanism in which PeJAZ2 acts as a positive regulator in response to drought stress via ABA-induced stomatal closure caused by H2O2 production. Our study presents a new insight into the crosstalk of ABA and jasmonic acid signaling in regulating WUE and drought stress, providing a basis of the drought tolerance mechanism of P. euphratica.


Asunto(s)
Ácido Abscísico , Populus , Ácido Abscísico/metabolismo , Resistencia a la Sequía , Populus/metabolismo , Peróxido de Hidrógeno/metabolismo , Sequías , Agua/metabolismo , Estomas de Plantas/fisiología
3.
Front Genet ; 12: 706930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335704

RESUMEN

Polyploidy, which is widely distributed in angiosperms, presents extremely valuable commercial applications in plant growth and reproduction. The flower development process of higher plants is essential for genetic improvement. Nevertheless, the reproduction difference between polyploidy and the polyploid florescence regulatory network from the perspective of microRNA (miRNA) remains to be elucidated. In this study, the autotetraploid of Lycium ruthenicum showed late-flowering traits compared with the progenitor. Combining the association of miRNA and next-generation transcriptome technology, the late-flowering characteristics triggered by chromosome duplication may be caused by the age pathway involved in miR156-SPLs and miR172-AP2, which inhibits the messenger RNA (mRNA) transcripts of FT in the leaves. Subsequently, FT was transferred to the shoot apical meristem (SAM) to inhibit the expression of the flowering integration factor SOC1, which can eventually result in delayed flowering time. Our exploration of the flowering regulation network and the control of the flowering time are vital to the goji producing in the late frost area, which provides a new perspective for exploring the intrinsic molecular mechanism of polyploid and the reproductive development of flowering plants.

4.
Tree Physiol ; 41(6): 1046-1064, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33169130

RESUMEN

Poplar, a woody perennial model, is a common and widespread tree genus. We cultivated two red leaf poplar varieties from bud mutation of Populus sp. Linn. '2025' (also known as Zhonglin 2025, L2025 for shot): Populus deltoides varieties with bright red leaves (LHY) and completely red leaves (QHY). After measuring total contents of flavonoid, anthocyanin, chlorophyll and carotenoid metabolites, a liquid chromatography-electrospray ionization-tandem mass spectrometry system was used for the relative quantification of widely targeted metabolites in leaves of three poplar varieties. A total of 210 flavonoid metabolites (89 flavones, 40 flavonols, 25 flavanones, 18 anthocyanins, 16 isoflavones, 7 dihydroflavonols, 7 chalcones, 5 proanthocyanidins and 3 other flavonoid metabolites) were identified. Compared with L2025, 48 and 8 flavonoids were more and less abundant, respectively, in LHY, whereas 51 and 9 flavonoids were more and less abundant in QHY, respectively. On the basis of a comprehensive analysis of the metabolic network, gene expression levels were analyzed by deep sequencing to screen for potential reference genes for the red leaves. Most phenylpropanoid biosynthesis pathway-involved genes were differentially expressed among the examined varieties. Gene expression analysis also revealed several potential anthocyanin biosynthesis regulators including three MYB genes. The study results provide new insights into poplar flavonoid metabolites and represent the theoretical basis for future studies on leaf coloration in this model tree species.


Asunto(s)
Populus , Antocianinas , Flavonoides , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo
5.
Hortic Res ; 7(1): 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257226

RESUMEN

Plants are continuously affected by unfavorable external stimuli, which influences their productivity and growth. Differences in gene composition and expression patterns lead homologous polyploid plants to exhibit different physiological phenomena, among which enhanced environmental adaptability is a powerful phenotype conferred by polyploidization. The mechanisms underlying the differences in stress tolerance between diploids and autotetraploids at the molecular level remain unclear. In this research, a full-length transcription profile obtained via the single-molecule real-time (SMRT) sequencing of high-quality single RNA molecules for use as background was combined with next-generation transcriptome and proteome technologies to probe the variation in the molecular mechanisms of autotetraploids. Tetraploids exhibited an increase in ABA content of 78.4% under natural conditions and a superior stress-resistance phenotype under severe drought stress compared with diploids. The substantial differences in the transcriptome profiles observed between diploids and autotetraploids under normal growth conditions were mainly related to ABA biosynthesis and signal transduction pathways, and 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2, which encode key synthetic enzymes, were significantly upregulated. The increased expression of the ABRE-binding factor 5-like (ABF5-like) gene was a pivotal factor in promoting the activation of the ABA signaling pathway and downstream target genes. In addition, ABA strongly induced the expression of osmotic proteins to increase the stress tolerance of the plants at the translational level. We consider the intrinsic mechanisms by which ABA affects drought resistance in tetraploids and diploids to understand the physiological and molecular mechanisms that enhance abiotic stress tolerance in polyploid plants.

6.
Genes (Basel) ; 10(8)2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405002

RESUMEN

Salt stress is a major constraint for many crops and trees. A wild species of Goji named Lycium ruthenicum is an important economic halophyte in China and has an extremely high tolerance to salinity. L. ruthenicum grows in saline soil and is known as a potash-rich species. However, its salt adaptation strategies and ion balance mechanism remains poorly understood. Potassium (K+) is one of the essential macronutrients for plant growth and development. In this study, a putative salt stress-responsive gene encoding a HAK (high-affinity K+)/KUP (K+ uptake)/KT (K+ transporter) transporter was cloned and designated as LrKUP8. This gene belongs to the cluster II group of the KT/HAK/KUP family. The expression of LrKUP8 was strongly induced under high NaCl concentrations. The OE-LrKUP8 calli grew significantly better than the vector control calli under salt stress conditions. Further estimation by ion content and micro-electrode ion flux indicated a relative weaker K+ efflux in the OE-LrKUP8 calli than in the control. Thus, a key gene involved in K+ uptake under salt condition was functionally characterized using a newly established L. ruthenicum callus transformation system. The importance of K+ regulation in L. ruthenicum under salt tolerance was highlighted.


Asunto(s)
Proteínas de Transporte de Catión/genética , Lycium/genética , Proteínas de Plantas/genética , Potasio/metabolismo , Tolerancia a la Sal , Proteínas de Transporte de Catión/metabolismo , Lycium/metabolismo , Proteínas de Plantas/metabolismo
7.
Breed Sci ; 69(1): 160-168, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31086494

RESUMEN

Lycium ruthenicum of Solanaceae was widely used as healthy vegetables and natural medicine foods for containing numerous functional components in leaves, roots and fruits. In the present study, tetraploid plants of L. ruthenicum were obtained efficiently by treating their leaves with colchicine in vitro. The highest induction frequency of the tetraploids was 31.4%, which was obtained by preculturing the leaves for 10 days and then treating them with 100 mg/L of colchicine concentration for 48 h. The ploidy levels of the regenerated plants were determined by flow cytometry and chromosome counting methods. Cytological, morphological, and histological characterization validated the results of flow cytometry, revealing the differences between the two kinds of ploidy plants in their tissue culture stage and field production stages. Morphological indexes also provide a simple and intuitionistic method for distinguishing tetraploid from diploid plants. As the chromosome number increased, the stomatal size and number of the chloroplasts in the stomata also increased, but the stomatal density decreased. The results indicate that the chromosome number is correlated with the stomatal index. The generated tetraploid is a potentially useful cultivated variety and will be beneficial for producing triploid progeny in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...