Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Biol Macromol ; 256(Pt 1): 128435, 2024 Jan.
Article En | MEDLINE | ID: mdl-38016605

Atopic dermatitis (AD) is usually treated with steroids, but long-term use is not an effective cure because side effects and disease aggravation. Therefore, more effective and safer treatments are needed. Using dexamethasone as the positive control, the mechanism of action of water-extracted homogeneous honeysuckle Lonicera japonica polysaccharide (WLJP-025p) to alleviate AD was studied. Mice were administered 2,4-dinitrochlorobenzene in their bare back and right ear to mimic an AD model. The efficacy of WLJP-025p in AD was assessed by measuring right ear thickness and skin lesion scores, pathological observation (haematoxylin-eosin and toluidine blue staining), and serum IgE and IL-1ß concentrations. The expression of relevant genes and proteins in the serum and back skin was detected using RT-qPCR, ELISA, western blotting, and immunofluorescence. Molecular docking and dynamic simulation of WLJP-025p and Act1 were performed. WLJP-025p considerably alleviated skin hyperplasia and pathological abnormalities in AD mice and inhibited the expression of Act1, Nucleus-P65, Nucleus-AP-1, and MAPK-related proteins in skin tissues. WLJP-025p formed a stable conformation with Act1, inhibited splenic Th17 differentiation, IL-17 release, and upregulated the expression of related skin barrier proteins. In conclusion, WLJP-025p affects the inflammation regulation via the MAPK/NFκB/AP-1 axis by binding to Act1, promotes the recovery of epithelial barrier function, and alleviates AD in mice.


Dermatitis, Atopic , Lonicera , Animals , Mice , Dermatitis, Atopic/metabolism , Transcription Factor AP-1/metabolism , Molecular Docking Simulation , Cytokines/metabolism , Skin , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/metabolism , Mice, Inbred BALB C
2.
Int Immunopharmacol ; 123: 110677, 2023 Oct.
Article En | MEDLINE | ID: mdl-37523973

Eucommia ulmoides Oliv (EUO) is a traditional therapeutic drug that tonifies the liver and kidney and may improve depression. However, the mechanism of action of the main component, aucubin (AU), is unknown. To study the therapeutic effect of AU, we constructed a chronic unpredictable mild stress (CUMS) depression model in mice. Depression-like behaviors, pathological damage, hormonal changes, inflammation, intranuclear expression of glucocorticoidreceptor (GR), and hippocampal protein expression were assessed. Immunofluorescence staining of the hippocampus showed that CUMS decreased neuronal regeneration, and axons were observed to be reduced and broken. Intracellular GR expression decreased in the hippocampus and hypothalamus, and serum levels of stress hormones increased. Furthermore, molecular changes indicative of pyroptosis were observed. AU administration reversed these changes and significantly improved the depression-like behavior induced by CUMS. Our results suggested that AU improves depression by promoting the intranuclear expression of GR and inhibiting nuclear factor-kappa B-mediated inflammatory activation-driven cell pyroptosis.


Depressive Disorder , NF-kappa B , Animals , Mice , Depression/drug therapy , Depression/metabolism , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Disease Models, Animal , Hippocampus , NF-kappa B/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Receptors, Glucocorticoid/drug effects
3.
J Ethnopharmacol ; 309: 116344, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-36889421

ETHNOPHARMACOLOGICAL RELEVANCE: Lonicera japonica Thunb. is a traditional medicinal herb with a long history owing to its widespread use in Asia for the treatment of several inflammatory diseases including allergic dermatitis; however, its active components and mechanism of action have not been fully elucidated. AIM OF THE STUDY: In this study, a homogeneous polysaccharide with strong anti-inflammatory effects was extracted from the traditional Chinese medicine Lonicera japonica. The mechanism by which the polysaccharide WLJP-025p regulates p62 to activate Nrf2, promote NLRP3 inflammasome degradation, and improve AD was investigated. MATERIALS AND METHODS: An AD model was established using DNCB, and saline was used as a control. The WLJP-L and WLJP-H groups were administered 30 and 60 mg/kg WLJP-025p during the model challenge period, respectively. The therapeutic effect of WLJP-025p was evaluated by determining the skin thickness, performing HE and toluidine blue staining, detecting TSLP via IHC, and determining serum IgE and IL-17 levels. Th17 differentiation was detected using flow cytometry. IF and WB were performed to evaluate the expression levels of c-Fos, p-p65, NLRP3 inflammatory bodies, autophagy pathway, ubiquitination, and Nrf2 proteins. RESULTS: WLJP-025p significantly inhibited DNCB-induced skin hyperplasia and pathological abnormalities and increased TSLP levels in mice. The differentiation of Th17 in the spleen, IL-17 release, p-c-Fos, p-p65 protein expression, and NLRP3 inflammasome activation in the skin tissues were reduced. Furthermore, p62 expression, p62 Ser403 phosphorylation, and ubiquitinated proteins were increased. CONCLUSIONS: WLJP-025p improved AD in mice by upregulating p62 to activate Nrf2 and promote the ubiquitination and degradation of NLRP3.


Dermatitis, Atopic , Lonicera , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-E2-Related Factor 2/metabolism , Interleukin-17 , Dinitrochlorobenzene , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
...