Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Lett ; 18(17): 4436-9, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27534683

RESUMEN

Combining a three-coordinated boron (BMes2) moiety with a four-coordinated photochromic organoboron unit leads to a series of new diboron compounds that undergo four-state reversible color switching in response to stimuli of light, heat, and fluoride ions. Thus, these hybrid diboron systems allow both convenient color tuning/switching of such photochromic systems, as well as visual fluoride sensing by color or fluorescent emission color change.

2.
J Am Chem Soc ; 138(18): 6020-7, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27099162

RESUMEN

A self-healing dielectric elastomer is achieved by the incorporation of metal-ligand coordination as cross-linking sites in nonpolar polydimethylsiloxane (PDMS) polymers. The ligand is 2,2'-bipyridine-5,5'-dicarboxylic amide, while the metal salts investigated here are Fe(2+) and Zn(2+) with various counteranions. The kinetically labile coordination between Zn(2+) and bipyridine endows the polymer fast self-healing ability at ambient condition. When integrated into organic field-effect transistors (OFETs) as gate dielectrics, transistors with FeCl2 and ZnCl2 salts cross-linked PDMS exhibited increased dielectric constants compared to PDMS and demonstrated hysteresis-free transfer characteristics, owing to the low ion conductivity in PDMS and the strong columbic interaction between metal cations and the small Cl(-) anions which can prevent mobile anions drifting under gate bias. Fully stretchable transistors with FeCl2-PDMS dielectrics were fabricated and exhibited ideal transfer characteristics. The gate leakage current remained low even after 1000 cycles at 100% strain. The mechanical robustness and stable electrical performance proved its suitability for applications in stretchable electronics. On the other hand, transistors with gate dielectrics containing large-sized anions (BF4(-), ClO4(-), CF3SO3(-)) displayed prominent hysteresis due to mobile anions drifting under gate bias voltage. This work provides insights on future design of self-healing stretchable dielectric materials based on metal-ligand cross-linked polymers.


Asunto(s)
Metales/química , Polímeros/química , 2,2'-Dipiridil , Cloruros/química , Reactivos de Enlaces Cruzados , Dimetilpolisiloxanos/química , Elasticidad , Electrónica , Compuestos Ferrosos/química , Ligandos , Compuestos de Zinc/química
3.
Adv Mater ; 26(39): 6729-33, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25146980

RESUMEN

An exciton-stimulated molecular transformation in an organic light-emitting diode (OLED) on a time scale of a few seconds under electrical bias is shown to reach nearly 100% under standard operating conditions, leading to color switching. It is reversible in both a thin film and an OLED when sufficient thermal energy is supplied. Such an exciton-stimulated molecular transformation suggests a new process which may be exploited for applications such as electrochromic and memory devices.

4.
Angew Chem Int Ed Engl ; 53(34): 9086-9, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24943291

RESUMEN

Two new tricyclic 1,2-azaboratabisnorcaradiene molecules (1 b and 2 b) generated through the photoisomerization of N-methyl-2-phenylimidazolyl-chelated dimesitylboranes (1 a and 2 a) have been found to undergo unusual photoisomerization, producing the first examples of 1,2-azaborabenzotropilidenes (1 c and 2 c), accompanied by a distinct color change, upon irradiation at 350 nm. Compounds 1 c and 2 c contain a conjugated alkylideneborane unit and can be fully reverted back to 1 b and 2 b, and subsequently to 1 a and 2 a upon heating. The mechanistic pathway of the new isomerism has been established to involve "walk" rearrangements by DFT computational studies.

5.
J Am Chem Soc ; 135(9): 3407-10, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23425336

RESUMEN

The new N,C-chelate boron compounds B(2-phenylazolyl)Mes2 [Mes = mesityl; azolyl = benzothiazolyl (1a), 4-methylthiazolyl (2a), benzoxazolyl (3a), benzimidazolyl (4a)] undergo an unprecedented multistructural transformation upon light irradiation or heating, sequentially producing isomers b, c, d, and e. The dark isomers b generated by photoisomerization of a undergo a rare thermal intramolecular H-atom transfer (HAT), reducing the azole ring and generating new isomers c, which are further transformed into isomers d. Remarkably, isomers d can be converted to their diastereomers e quantitatively by heating, and e can be converted back to d by irradiation at 300 nm. The structures of isomers 1d and 1e were established by X-ray diffraction. The unusual HAT reactivity can be attributed to the geometry of the highly energetic isomers b and the relatively low aromaticity of the azole rings. The boryl unit plays a key role in the reversible interconversion of d and e, as shown by mechanistic pathways established through DFT and TD-DFT calculations.


Asunto(s)
Azoles/síntesis química , Compuestos de Boro/síntesis química , Quelantes/síntesis química , Temperatura , Azoles/química , Compuestos de Boro/química , Quelantes/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Teoría Cuántica
6.
Dalton Trans ; 42(3): 638-44, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-22875272

RESUMEN

A dithienyl unit in a N,C-chelate monoboryl compound has been found to completely stabilize a N,C-chelate boryl chromophore toward photoisomerization. N,C-chelate diboryl compounds that contain a dithienyl unit display a similar high stability toward photoisomerization. This greatly enhanced photostability is attributed to the π → π* transition and luminescence involving the dithienyl unit that competes effectively with photoisomerization of the boryl chromophore.

7.
Chemistry ; 18(36): 11306-16, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22829496

RESUMEN

New phosphorescent Pt(II) compounds based on dimesitylboron (BMes(2))-functionalized 2-phenylpyridyl (ppy) N,C-chelate ligands and an acetylacetonato ancillary ligand have been achieved. We have found that BMes(2) substitution at the 4'-position of the phenyl ring can blue-shift the phosphorescent emission energy of the Pt(II) compound by approximately 50 nm, compared to the 5'-BMes(2) substituted analogue, without substantial loss of luminescent quantum efficiencies. The emission color of the 4'-BMes(2) substituted Pt(II) compound, Pt(Bppy)(acac) (1) can be further tuned by the introduction of a substituent group at the 3'-position of the phenyl ring. A methyl substituent red-shifts the emission energy of 1 by approximately 10 nm whereas a fluoro substituent blue-shifts the emission energy by about 6 nm. Using this strategy, three bright blue-green phosphorescent Pt(II) compounds 1, 2 and 3 with emission energy at 481, 492, and 475 nm and Φ(PL)=0.43, 0.26 and 0.25, respectively, have been achieved. In addition, we have examined the impact of BMes(2) substitution on 3,5-dipyridylbenzene (dpb) N,C,N-chelate Pt(II) compounds by synthesizing compound 4, Pt(Bdpb)Cl, which has a BMes(2) group at the 4'-position of the benzene ring. Compound 4 has a phosphorescent emission band at 485 nm and Φ(PL)=0.70. Highly efficient blue-green electroluminescent (EL) devices with a double-layer structure and compounds 1, 3 or 4 as the phosphorescent dopant have been fabricated. At 100 cd m(-2) luminance, EL devices based on 1, 3 and 4 with an external quantum efficiency of 4.7, 6.5 and 13.4%, respectively, have been achieved.

8.
J Am Chem Soc ; 134(26): 11026-34, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22686627

RESUMEN

C,C-chelate dimesitylboron (BMes(2)) compounds containing an N-heterocyclic carbene (NHC) donor have been obtained. Single-crystal X-ray diffraction analyses established that the boron atom in these compounds is bound by four carbon atoms in a distorted tetrahedral geometry. Compared to previously reported N,C-chelate dimesitylboron compounds, the new C,C-chelate boron compounds have a much larger HOMO-LUMO energy gap (>3.60 eV). They do, however, respond to UV irradiation (300 nm) in the same manner as N,C-chelate BMes(2) compounds do, undergoing photoisomerization and converting to an intensely colored (yellow or orange) isomer A quantitatively, with a high quantum efficiency (0.60-0.75). NMR and single-crystal X-ray diffraction analyses established that the structure of A is similar to the dark isomers obtained from N,C-chelate BMes(2) compounds. However, unlike the N,C-chelate dark isomers that have the tendency to thermally reverse back to the light colored isomers, the isomers A of the C,C-chelate BMes(2) are thermally stable and no reverse isomerization was observed even when heated to 80 °C (or 110 °C) for hours. The most unusual finding is that isomers A undergo further photoisomerization when irradiated at 350 nm, forming a new colorless species B nearly quantitatively. NMR and single-crystal X-ray diffraction analyses established the structure of isomer B, which may be considered as an intramolecular C-H insertion product via a borylene intermediate. Mechanistic aspects of this unusual two-step photoisomerization process have been examined by DFT computational studies.

9.
Inorg Chem ; 50(24): 12263-74, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-21604707

RESUMEN

Four-coordinate organoboron compounds with a π-conjugated chelate backbone have emerged recently as highly attractive materials for a number of applications including use as emitters and electron-transport materials for organic light-emitting diodes (OLEDs) or organic field transistors, photoresponsive materials, and sensory and imaging materials. Many applications of this class of boron compounds stem from the electronic properties of the π-conjugated chelate backbone. Charge-transfer transitions from an aromatic substituent attached to the boron center of the π-conjugated chelate backbone and steric congestion have also been found to play important roles in the luminescent and photochromic properties of the four-coordinate boron compounds. This article provides an update-to-date account on the application aspects of this important class of compounds in materials science with the emphasis on OLED applications and photochromic switching.


Asunto(s)
Compuestos de Boro/química , Complejos de Coordinación/química , Electrones , Electrónica , Ligandos , Luminiscencia , Dispositivos Ópticos , Fotoquímica , Electricidad Estática
10.
Inorg Chem ; 48(16): 7698-713, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19621883

RESUMEN

The impact of two constitutional isomers, 2-(4-BMes(2)-Ph)-pyridine (p-B-ppy, 1) and 5-BMes(2)-2-ph-pyridine (p-ppy-B, 2), as N,C-chelate ligands on the structures, stabilities, electronic and photophysical properties, and Lewis acidities of Pt(II) complexes has been investigated. Six Pt(II) complexes, Pt(p-B-ppy)Ph(DMSO) (1a), Pt(p-B-ppy)Ph(py) (1b), [Pt(p-B-ppy)Ph](2)(4,4'-bipy) (1c), Pt(p-ppy-B)Ph(DMSO) (2a), Pt(p-ppy-B)Ph(py) (2b), and [Pt(p-ppy-B)Ph](2)(4,4'-bipy) (2c), have been synthesized and fully characterized. The structures of 1a, 1c, 2a, and 2c were established by single-crystal X-ray diffraction analysis. All complexes adopt a cis geometry with the phenyl ligand being cis to the phenyl ring of the ppy chelate. The dinuclear complexes 2a and 2c were found to exist in two isomeric forms in solution, syn and anti, with respect to the relative orientation of the two BMes(2) groups in the molecule. While all complexes are stable in solution under ambient air, compound 2a was found to react with H(2)O slowly in solution and form complex 2a-OH, where one of the mesityl groups on the boron center was replaced by an OH group. This instability of 2a is attributed to an internal dimethylsulfoxide-directed hydrolysis process via hydrogen bonds. The electron-accepting ability of the free ligands and the complexes were examined by cyclic voltammetry, establishing that, for p-ppy-B, Pt(II) chelation enhances the electron-accepting ability while, for p-B-ppy, Pt(II) chelation has little impact. All Pt(II) complexes display oxygen-sensitive phosphorescence in solution at ambient temperature, dominated by B-ppy or ppy-B centered pi --> pi* transitions. The Lewis acidity of the complexes was examined by fluoride titration experiments using UV-vis, phosphorescence, and NMR spectroscopic methods, establishing that the p-ppy-B complexes have similar and strong binding constants while the p-B-ppy complexes have a much lower affinity toward F(-), compared to the free ligands. In the dinuclear complexes, weak electronic communication between the two Pt(II) units is evident in 1c but absent in 2c, attributable to the different steric interactions in the two molecules.

11.
J Am Chem Soc ; 130(39): 12898-900, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18767853

RESUMEN

A diboron compound with both 3-coordinate boron and 4-coordinate boron centers, (5-BMes2-2-ph-py)BMes2 (1) and its monoboron analogue, (2-ph-py)BMes2 (2) have been synthesized. Both compounds are luminescent but have a high sensitivity toward light. UV and ambient light cause both compounds to isomerize to 1a and 2a, respectively, via the formation of a C-C bond between a mesityl and the phenyl group, accompanied by a drastic color change from yellow or colorless to dark olive green or dark blue. The structures of 1a and 2a were established by 2D NMR experiments and geometry optimization by DFT calculations. Both 1a and 2a can thermally reverse back to 1 and 2 via the breaking of a C-C bond, with the activation barrier being 107 and 110 kJ/mol, respectively. The N,C-chelate ligands in 1 and 2 were found to play a key role in promoting this unusual and reversible photo-thermal isomerization process on a tetrahedral boron center. Reactions with oxygen molecules convert 1a and 2a to 5-BMes2-2-[(2-Mes)-ph]-pyridine (1b) and 2-(2-Mes)-ph-pyridine (2b), respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA