Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 11: 1411354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978788

RESUMEN

The oxygen sensitivity of voltage-gated potassium (Kv) channels regulates cardiovascular physiology. Members of the Kv1 family interact with intracellular Kvß proteins, which exhibit aldo-keto reductase (AKR) activity and confer redox sensitivity to Kv channel gating. The Kvß proteins contribute to vasoregulation by controlling outward K+ currents in smooth muscle upon changes in tissue oxygen consumption and demand. Considering exercise as a primary physiological stimulus of heightened oxygen demand, the current study tested the role of Kvß proteins in exercise performance, exercise-induced adaptations in myocardial perfusion, and physiological cardiac growth. Our findings reveal that genetic ablation of Kvß2 proteins diminishes baseline exercise capacity in mice and attenuates the enhancement in exercise performance observed after long-term training. Moreover, we demonstrate that Kvß2 proteins are critical for exercise-mediated enhancement in myocardial perfusion during cardiac stress as well as adaptive changes in cardiac structure. Our results underscore the importance of Kvß proteins in metabolic vasoregulation, highlighting their role in modulating both exercise capacity and cardiovascular benefits associated with training. Furthermore, our study sheds light on a novel molecular target for enhancing exercise performance and improving the health benefits associated with exercise training in patients with limited capacity for physical activity.

2.
J Physiol ; 601(13): 2621-2634, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37114864

RESUMEN

Smooth muscle voltage-gated K+ (Kv) channels in resistance arteries control vascular tone and contribute to the coupling of blood flow with local metabolic activity. Members of the Kv1 family are expressed in vascular smooth muscle and are modulated upon physiological elevation of local metabolites, including the glycolytic end-product l-lactate and superoxide-derived hydrogen peroxide (H2 O2 ). Here, we show that l-lactate elicits vasodilatation of small-diameter mesenteric arteries in a mechanism that requires lactate dehydrogenase (LDH). Using the inside-out configuration of the patch clamp technique, we show that increases in NADH that reflect LDH-mediated conversion of l-lactate to pyruvate directly stimulate the activity of single Kv1 channels and significantly enhance the sensitivity of Kv1 activity to H2 O2 . Consistent with these findings, H2 O2 -evoked vasodilatation was significantly greater in the presence of 10 mM l-lactate relative to lactate-free conditions, yet was abolished in the presence of 10 mM pyruvate, which shifts the LDH reaction towards the generation of NAD+ . Moreover, the enhancement of H2 O2 -induced vasodilatation was abolished in arteries from double transgenic mice with selective overexpression of the intracellular Kvß1.1 subunit in smooth muscle cells. Together, our results indicate that the Kvß complex of native vascular Kv1 channels serves as a nodal effector for multiple redox signals to precisely control channel activity and vascular tone in the face of dynamic tissue-derived metabolic cues. KEY POINTS: Vasodilatation of mesenteric arteries by elevated external l-lactate requires its conversion by lactate dehydrogenase. Application of either NADH or H2 O2 potentiates single Kv channel currents in excised membrane patches from mesenteric artery smooth muscle cells. The binding of NADH enhances the stimulatory effects of H2 O2 on single Kv channel activity. The vasodilatory response to H2 O2 is differentially modified upon elevation of external l-lactate or pyruvate. The presence of l-lactate enhances the vasodilatory response to H2 O2 via the Kvß subunit complex in smooth muscle.


Asunto(s)
NAD , Canales de Potasio con Entrada de Voltaje , Ratones , Animales , NAD/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Dilatación , Canales de Potasio con Entrada de Voltaje/fisiología , Arterias Mesentéricas , Oxidación-Reducción , Piruvatos/metabolismo , Piruvatos/farmacología , Lactato Deshidrogenasas/metabolismo
3.
Cells ; 11(14)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35883673

RESUMEN

Excitable cells of the nervous and cardiovascular systems depend on an assortment of plasmalemmal potassium channels to control diverse cellular functions. Voltage-gated potassium (Kv) channels are central to the feedback control of membrane excitability in these processes due to their activation by depolarized membrane potentials permitting K+ efflux. Accordingly, Kv currents are differentially controlled not only by numerous cellular signaling paradigms that influence channel abundance and shape voltage sensitivity, but also by heteromeric configurations of channel complexes. In this context, we discuss the current knowledge related to how intracellular Kvß proteins interacting with pore complexes of Shaker-related Kv1 channels may establish a modifiable link between excitability and metabolic state. Past studies in heterologous systems have indicated roles for Kvß proteins in regulating channel stability, trafficking, subcellular targeting, and gating. More recent works identifying potential in vivo physiologic roles are considered in light of these earlier studies and key gaps in knowledge to be addressed by future research are described.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Potasio , Membrana Celular/metabolismo , Potenciales de la Membrana/fisiología , Potasio/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo
4.
Nat Commun ; 13(1): 2051, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440632

RESUMEN

Adequate oxygen delivery to the heart during stress is essential for sustaining cardiac function. Acute increases in myocardial oxygen demand evoke coronary vasodilation and enhance perfusion via functional upregulation of smooth muscle voltage-gated K+ (Kv) channels. Because this response is controlled by Kv1 accessory subunits (i.e., Kvß), which are NAD(P)(H)-dependent aldo-keto reductases, we tested the hypothesis that oxygen demand modifies arterial [NAD(H)]i, and that resultant cytosolic pyridine nucleotide redox state influences Kv1 activity. High-resolution imaging mass spectrometry and live-cell imaging reveal cardiac workload-dependent increases in NADH:NAD+ in intramyocardial arterial myocytes. Intracellular NAD(P)(H) redox ratios reflecting elevated oxygen demand potentiate native coronary Kv1 activity in a Kvß2-dependent manner. Ablation of Kvß2 catalysis suppresses redox-dependent increases in Kv1 activity, vasodilation, and the relationship between cardiac workload and myocardial blood flow. Collectively, this work suggests that the pyridine nucleotide sensitivity and enzymatic activity of Kvß2 controls coronary vasoreactivity and myocardial blood flow during metabolic stress.


Asunto(s)
NAD , Canales de Potasio con Entrada de Voltaje , Músculo Liso , Nucleótidos , Oxidación-Reducción , Oxígeno , Canales de Potasio con Entrada de Voltaje/fisiología , Piridinas
6.
Chem Biol Interact ; 305: 21-27, 2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-30926318

RESUMEN

Voltage-gated potassium (Kv) channels play an essential role in the regulation of membrane excitability and thereby control physiological processes such as cardiac excitability, neural communication, muscle contraction, and hormone secretion. Members of the Kv1 and Kv4 families are known to associate with auxiliary intracellular Kvß subunits, which belong to the aldo-keto reductase superfamily. Electrophysiological studies have shown that these proteins regulate the gating properties of Kv channels. Although the three gene products encoding Kvß proteins are functional enzymes in that they catalyze the nicotinamide adenine dinucleotide phosphate (NAD[P]H)-dependent reduction of a wide range of aldehyde and ketone substrates, the physiological role for these proteins and how each subtype may perform unique roles in coupling membrane excitability with cellular metabolic processes remains unclear. Here, we discuss current knowledge of the enzymatic properties of Kvß proteins from biochemical studies with their described and purported physiological and pathophysiological influences.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Aldehídos/metabolismo , Animales , Humanos , Sistema Inmunológico/metabolismo , Cetonas/metabolismo , Cinética , Miocardio/metabolismo , NADP/metabolismo , Sistema Nervioso/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...