Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6344, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284139

RESUMEN

Studies of color perception have led to mechanistic models of how cone-opponent signals from retinal ganglion cells are integrated to generate color appearance. But it is unknown how this hypothesized integration occurs in the brain. Here we show that cone-opponent signals transmitted from retina to primary visual cortex (V1) are integrated through highly organized circuits within V1 to implement the color opponent interactions required for color appearance. Combining intrinsic signal optical imaging (ISI) and 2-photon calcium imaging (2PCI) at single cell resolution, we demonstrate cone-opponent functional domains (COFDs) that combine L/M cone-opponent and S/L + M cone-opponent signals following the rules predicted from psychophysical studies of color perception. These give rise to an orderly organization of hue preferences of the neurons within the COFDs and the generation of hue "pinwheels". Thus, spatially organized neural circuits mediate an orderly transition from cone-opponency to color appearance that begins in V1.


Asunto(s)
Calcio , Corteza Visual Primaria , Células Fotorreceptoras Retinianas Conos/fisiología , Percepción de Color/fisiología , Retina/fisiología , Estimulación Luminosa/métodos , Color
2.
Science ; 364(6447): 1275-1279, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31249057

RESUMEN

Previous studies support the textbook model that shape and color are extracted by distinct neurons in primate primary visual cortex (V1). However, rigorous testing of this model requires sampling a larger stimulus space than previously possible. We used stable GCaMP6f expression and two-photon calcium imaging to probe a very large spatial and chromatic visual stimulus space and map functional microarchitecture of thousands of neurons with single-cell resolution. Notable proportions of V1 neurons strongly preferred equiluminant color over achromatic stimuli and were also orientation selective, indicating that orientation and color in V1 are mutually processed by overlapping circuits. Single neurons could precisely and unambiguously code for both color and orientation. Further analyses revealed systematic spatial relationships between color tuning, orientation selectivity, and cytochrome oxidase histology.


Asunto(s)
Percepción de Color/fisiología , Orientación/fisiología , Conducta Espacial/fisiología , Corteza Visual/fisiología , Animales , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Macaca fascicularis , Neuroimagen , Neuronas , Corteza Visual/ultraestructura
5.
Nat Neurosci ; 19(12): 1743-1749, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27798629

RESUMEN

A fundamental impediment to understanding the brain is the availability of inexpensive and robust methods for targeting and manipulating specific neuronal populations. The need to overcome this barrier is pressing because there are considerable anatomical, physiological, cognitive and behavioral differences between mice and higher mammalian species in which it is difficult to specifically target and manipulate genetically defined functional cell types. In particular, it is unclear the degree to which insights from mouse models can shed light on the neural mechanisms that mediate cognitive functions in higher species, including humans. Here we describe a novel recombinant adeno-associated virus that restricts gene expression to GABAergic interneurons within the telencephalon. We demonstrate that the viral expression is specific and robust, allowing for morphological visualization, activity monitoring and functional manipulation of interneurons in both mice and non-genetically tractable species, thus opening the possibility to study GABAergic function in virtually any vertebrate species.


Asunto(s)
Encéfalo/virología , Dependovirus/aislamiento & purificación , Neuronas GABAérgicas/virología , Interneuronas/fisiología , Vertebrados/virología , Animales , Conducta Animal , Encéfalo/metabolismo , Células Cultivadas , Dependovirus/genética , Femenino , Neuronas GABAérgicas/patología , Vectores Genéticos/genética , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA