Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37176798

RESUMEN

The unique properties of NB, such as its nano-size effect and greater adsorption capacity, have the potential to mitigate ammonia (NH3) emission, but may also pose threats to soil life and their associated processes, which are not well understood. We studied the influence of different NB concentrations on NH3 emission, soil microbial biomass, nutrient mineralization, and corn nutrient uptake from farmyard manure (FM). Three different NB concentrations i.e., 12.5 (NB1), 25 (NB2), and 50% (NB3), alone and in a fertilizer mixture with FM, were applied to corn. NB1 alone increased microbial biomass in soil more than control, but other high NB concentrations did not influence these parameters. In fertilizer mixtures, NB2 and NB3 decreased NH3 emission by 25% and 38%, respectively, compared with FM alone. Additionally, NB3 significantly decreased microbial biomass carbon, N, and soil potassium by 34%, 36%, and 14%, respectively, compared with FM. This toxicity to soil parameters resulted in a 21% decrease in corn K uptake from FM. Hence, a high NB concentration causes toxicity to soil microbes, nutrient mineralization, and crop nutrient uptake from the FM. Therefore, this concentration-dependent toxicity of NB to soil microbes and their associated processes should be considered before endorsing NB use in agroecosystems.

2.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986999

RESUMEN

Recently, nanomaterials have received considerable attention in the agricultural sector, due to their distinctive characteristics such as small size, high surface area to volume ratio, and charged surface. These properties allow nanomaterials to be utilized as nanofertilizers, that can improve crop nutrient management and reduce environmental nutrient losses. However, after soil application, metallic nanoparticles have been shown to be toxic to soil biota and their associated ecosystem services. The organic nature of nanobiochar (nanoB) may help to overcome this toxicity while maintaining all the beneficial effects of nanomaterials. We aimed to synthesize nanoB from goat manure and utilize it with CuO nanoparticles (nanoCu) to influence soil microbes, nutrient content, and wheat productivity. An X-ray diffractogram (XRD) confirmed nanoB synthesis (crystal size = 20 nm). The XRD spectrum showed a distinct carbon peak at 2θ = 42.9°. Fourier-transform spectroscopy of nanoB's surface indicated the presence of C=O, C≡N-R, and C=C bonds, and other functional groups. The electron microscopic micrographs of nanoB showed cubical, pentagonal, needle, and spherical shapes. NanoB and nanoCu were applied alone and as a mixture at the rate of 1000 mg kg-1 soil, to pots where wheat crop was grown. NanoCu did not influence any soil or plant parameters except soil Cu content and plant Cu uptake. The soil and wheat Cu content in the nanoCu treatment were 146 and 91% higher, respectively, than in the control. NanoB increased microbial biomass N, mineral N, and plant available P by 57, 28, and 64%, respectively, compared to the control. The mixture of nanoB and nanoCu further increased these parameters, by 61, 18, and 38%, compared to nanoB or nanoCu alone. Consequently, wheat biological, grain yields, and N uptake were 35, 62 and 80% higher in the nanoB+nanoCu treatment compared to the control. NanoB further increased wheat Cu uptake by 37% in the nanoB+nanoCu treatment compared to the nanoCu alone. Hence, nanoB alone, or in a mixture with nanoCu, enhanced soil microbial activity, nutrient content, and wheat production. NanoB also increased wheat Cu uptake when mixed with nanoCu, a micronutrient essential for seed and chlorophyll production. Therefore, a mixture of nanobiochar and nanoCu would be recommended to farmers for improving their clayey loam soil quality and increasing Cu uptake and crop productivity in such agroecosystems.

3.
N Biotechnol ; 75: 40-51, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-36948413

RESUMEN

The massive production and extensive use of fossil-based non-biodegradable plastics are leading to their environmental accumulation and ultimately cause health threats to animals, humans, and the biosphere in general. The problem can be overcome by developing eco-friendly ways for producing plastics-like biopolymers from waste residues such as of agricultural origin. This will solve two currently prevailing social issues: waste management and the efficient production of a biopolymer that is environmentally benign, polyhydroxyalkanoates (PHA). The current study assesses the environmental impact of biopolymer (PHA) manufacturing, starting from slaughterhouse waste as raw material. The Material Input Per Service Unit methodology (MIPS) is used to examine the sustainability of the PHA production process. In addition, the impact of shifting from business-as-usual energy provision (i.e., electricity from distribution grid network and heat provision from natural gas) to alternative renewable energy sources is also evaluated. As a major outcome, it is shown that the abiotic material contribution for PHA production process is almost double for using hard coal as an energy source than the petro-plastic low-density-poly(ethene) (LPDE), which PHA shall ultimately replace. Likewise, abiotic material contribution is 43 % and 7 % higher when using the electricity from the European electricity mix (EU-27 mix) and biogas, respectively, than in the case of LDPE production. However, PHA production based on wind power for energy provision has 12 % lower abiotic material input than LDPE. Furthermore, the water input decreases when moving from the EU-27 mix to wind power. The reduction in water consumption for various electricity provision resources amounts to 20 % for the EU-27 mix, 25 % for hard coal, 71 % for wind, and 70 % for biogas. As the main conclusion, it is demonstrated that using wind farm electricity to generate PHA is the most environmentally friendly choice. Biogas is the second-best choice, although it requires additional abiotic material input.


Asunto(s)
Polihidroxialcanoatos , Humanos , Animales , Biocombustibles , Polietileno , Biopolímeros , Carbón Mineral
4.
Sci Total Environ ; 856(Pt 1): 158779, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36116658

RESUMEN

In this study, brominated flame retardants (BFRs), phthalates, and organophosphate flame retardants (PFRs) were analyzed in indoor household dust collected during the COVID-19 related strict lockdown (April-July 2020) period. Floor dust samples were collected from 40 households in Jeddah, Saudi Arabia. The levels of most of the analyzed chemicals were visibly high and for certain chemicals multifold high in analyzed samples compared to earlier studies on indoor dust from Jeddah. Bis (2-ethylhexyl) phthalate (DEHP) was the primary chemical in these dust samples, with a median concentration of 769,500 ng/g of dust. Tris (2-butoxy ethyl) phosphate (TBEP) and Decabromodiphenyl ether (BDE 209) contributed the highest among PFRs and BFRs with median levels of 5990 and 940 ng/g of dust, respectively. The estimated daily exposure in the worst case scenario (23,700 ng/kg bw/day) for Saudi children was above the reference dose (20,000 ng/kg bw/day) for DEHP, and the hazardous index (HI) was also >1. The long-term carcinogenic risk was above the 1 × 10-5, indicating a risk to the health of Saudi young children from getting exposed to DEHP from indoor dust. This study draws attention to the increased indoor pollution during the lockdown period when all of the daily activities by adults and children were performed indoors, which negatively impacted human health, as suggested by the calculated risk. However, the current study has limitations and warrants more monitoring studies from different parts of the world to understand the phenomenon. At the same time, this study also highlights another side of COVID-19 related to our lives.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Dietilhexil Ftalato , Retardadores de Llama , Niño , Adulto , Humanos , Preescolar , Retardadores de Llama/análisis , Polvo , Organofosfatos/análisis , COVID-19/epidemiología , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis , Control de Enfermedades Transmisibles , Éteres Difenilos Halogenados/análisis , Compuestos Organofosforados/análisis , Fosfatos
5.
Environ Res ; 204(Pt B): 112071, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34562487

RESUMEN

There is an increasing evidence that meteorological (temperature, relative humidity, dew) and air quality indicators (PM2.5, PM10, NO2, SO2, CO) are affecting the COVID-19 transmission rate and the number of deaths in many countries around the globe. However, there are contradictory results due to limited observations of these parameters and absence of conclusive evidence on such relationships in cold or hot arid tropical and subtropical desert climate of Gulf region. This is the first study exploring the relationships of the meteorological (temperature, relative humidity, and dew) and air quality indicators (PM10,CO, and SO2) with daily COVID-19 infections and death cases for a period of six months (1st March to August 31, 2020) in six selected cities of the Kingdom of Saudi Arabia by using generalized additive model. The Akaike information criterion (AIC) was used to assess factors affecting the infections rate and deaths through the selection of best model whereas overfitting of multivariate model was avoided by using cross-validation. Spearman correlation indicated that exponentially weighted moving average (EWMA) temperature and relative humidity (R > 0.5, P < 0.0001) are the main variables affecting the daily COVID-19 infections and deaths. EWMA temperature and relative humidity showed non linear relationships with the number of COVID-19 infections and deaths (DF > 1, P < 0.0001). Daily COVID-19 infections showed a positive relationship at temperature between 23 and 34.5 °C and relative humidity ranging from 30 to 60%; a negative relationship was found below and/or above these ranges. Similarly, the number of deaths had a positive relationship at temperature ˃28.7 °C and with relative humidity ˂40%, showing higher number of deaths above this temperature and below this relative humidity rate. All air quality indicators had linear relationships with the number of COVID-19 infections and deaths (P < 0.0001). Hence, variation in temperature, relative humidity and air pollution indicators could be important factors influencing the COVID-19 spread and mortality. Under the current scenario with rising temperature and relative humidity, the number of cases is increasing, hence it justifies an active government policy to lessen COVID-19 infection rate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Ciudades , Humanos , Humedad , Indicadores de Calidad de la Atención de Salud , SARS-CoV-2 , Arabia Saudita/epidemiología , Temperatura
6.
Environ Pollut ; 293: 118559, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34801625

RESUMEN

The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO2 emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO2 emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.


Asunto(s)
Estiércol , Nanopartículas del Metal/toxicidad , Microbiología del Suelo , Óxido de Zinc , Agricultura , Agroquímicos/toxicidad , Carbono , Ciclo del Carbono , Fertilizantes/análisis , Nitrógeno , Ciclo del Nitrógeno , Suelo , Spinacia oleracea , Óxido de Zinc/toxicidad
7.
Polymers (Basel) ; 13(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34578067

RESUMEN

Currently, the global agriculture productivity is heavily relied on the use of chemical fertilizers. However, the low nutrient utilization efficiency (NUE) is the main obstacle for attaining higher crop productivity and reducing nutrients losses from these fertilizers to the environment. Coating fertilizer with micronutrients and biopolymer can offer an opportunity to overcome these fertilizers associated problems. Here, we coated urea with zinc sulphate (ZnS) and ZnS plus molasses (ZnSM) to control its N release, decrease the ammonia (NH3) volatilization and improve N utilization efficiency by sunflower. Morphological analysis confirmed a uniform coating layer formation of both formulations on urea granules. A slow release of N from ZnS and ZnSM was observed in water. After soil application, ZnSM decreased the NH3 emission by 38% compared to uncoated urea. Most of the soil parameters did not differ between ZnS and uncoated urea treatment. Microbial biomass N and Zn in ZnSM were 125 and 107% higher than uncoated urea, respectively. Soil mineral N in ZnSM was 21% higher than uncoated urea. Such controlled nutrient availability in the soil resulted in higher sunflower grain yield (53%), N (80%) and Zn (126%) uptakes from ZnSM than uncoated fertilizer. Hence, coating biopolymer with Zn on urea did not only increase the sunflower yield and N utilization efficiency but also meet the micronutrient Zn demand of sunflower. Therefore, coating urea with Zn plus biopolymer is recommended to fertilizer production companies for improving NUE, crop yield and reducing urea N losses to the environment in addition to fulfil crop micronutrient demand.

8.
Artículo en Inglés | MEDLINE | ID: mdl-34198502

RESUMEN

Children spend most of their daily time indoors. Many of the items used indoors, such as furniture, electronics, textile, and children toys, are treated with chemicals to provide longevity and fulfil the safety standards. However, many chemicals added to these products are released into the environment during leaching out from the treated products. Many studies have reported brominated flame retardants (BFRs) in indoor environments; however, few have focused on environments specified for young children. In this study, paired air (PM10) and dust samples were collected from the rooms (n = 30) of Saudi children. These samples were analyzed for different congeners of polybrominated diphenyl ethers (PBDEs) and three important alternative flame retardants using gas chromatography-mass spectrometry. Decabromodiphenyl ether (BDE 209) was the most important analyzed BFR in dust and PM10 samples with a median value of 3150 ng/g of dust and 75 pg/m3. This indicates the wider application of BDE 209 has implications for its occurrence, although its use has been regulated for specified uses since 2014. Among alternative BFRs, 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), Bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), and 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE) were found with a median levels of 10, 15 and 8 ng/g of dust, respectively. However, alternative BFRs were present in <50% of the PM10 samples. The calculated long term and daily exposures via indoor dust and PM10 of Saudi children from their rooms were well below the respective reference dose (RfD) values. Nonetheless, the study highlights BDE 209 at higher levels than previously reported from household dust in Saudi Arabia. The study warrants further extensive research to estimate the different classes of chemical exposure to children from their rooms.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Contaminación del Aire Interior/análisis , Niño , Preescolar , Polvo/análisis , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Humanos , Medición de Riesgo , Arabia Saudita
9.
Sci Rep ; 11(1): 11540, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079018

RESUMEN

Recently, there is an increasing trend of using metallic nanoparticles (NPs) in agriculture due to their potential role in remediating soil pollution and improving nutrient utilization from fertilizers. However, evidence suggested that these NPs were toxic to the soil life and their associated functions, and this toxicity depended on their dose, type, and size. Here, a dose-dependent (5, 50, and 100 mg kg-1 soil) toxicity of NiO NPs on poultry manure (PM: 136 kg N ha-1) decomposition, nutrient mineralization, and herbage N uptake were studied in a standard pot experiment. The NPs doses were mixed with PM and applied in soil-filled pots where then ryegrass was sown. Results revealed that the lowest dose significantly increased microbial biomass (C and N) and respiration from PM, whereas a high dose reduced these parameters. This decrease in such parameters by the highest NPs dose resulted in 13 and 41% lower soil mineral N and plant available K from PM, respectively. Moreover, such effects resulted in 32 and 35% lower herbage shoot and root N uptakes from PM in this treatment. Both intermediate and high doses decreased herbage shoot Ni uptake from PM by 33 and 34%, respectively. However, all NPs doses did not influence soil Ni content from PM. Hence, our results indicated that high NPs dose (100 mg kg-1) was toxic to decomposition, nutrient mineralization, and herbage N uptake from PM. Therefore, such NiONPs toxicity should be considered before recommending their use in agriculture for soil remediation or optimizing nutrient use efficiency of fertilizers.

10.
Artículo en Inglés | MEDLINE | ID: mdl-33946299

RESUMEN

People may spend a significant amount of their daily time in cars and thus be exposed to chemicals present in car dust. Various chemicals are emitted from during car use, contaminating the car dust. In this study, we compiled published and unpublished data on the occurrence of phthalates, flame retardants (FRs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) in Saudi car dust. Phthalates, a class of chemical commonly used as plasticizers in different car parts, were the major pollutants found in car dust, with a median value of ∑phthalates 1,279,000 ng/g. Among other chemicals, organophosphate flame retardants (OPFRs) were found to be between 1500-90,500 ng/g, which indicates their use as alternative FRs in the car industry. The daily exposure to Saudi drivers (regular and taxi drivers) was below the respective reference dose (RfD) values of the individual chemicals. However, the estimated incremental lifetime cancer risk (ILCR) values due to chronic exposure to these chemicals was >1 × 10-5 for taxi drivers for phthalates and PAHs, indicating that the long-term exposure to these chemicals is a cause of concern for drivers who spend considerable time in cars. The study has some limitations, due to the small number of samples, lack of updated RfD values, and missing cancer slope factors for many studied chemicals. Despite these limitations, this study indicates the possible range of exposure to drivers from chemicals in car dust and warrants further extensive studies to confirm these patterns.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Compuestos Orgánicos Volátiles , Contaminación del Aire Interior/análisis , Automóviles , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Retardadores de Llama/análisis , Humanos , Organofosfatos/análisis , Proyectos Piloto , Arabia Saudita
11.
Artículo en Inglés | MEDLINE | ID: mdl-33800440

RESUMEN

To control the spread of coronavirus disease (COVID-19), Saudi Arabia's government imposed a strict lockdown during March-July 2020. As a result, the public was confined to indoors, and most of their daily activities were happening in their indoor places, which might have resulted in lower indoor environment quality. Polycyclic aromatic hydrocarbons (PAHs) were analyzed in household dust (n = 40) collected from different residential districts of Jeddah, Saudi Arabia, during the lockdown period. PAHs' levels were two folds higher than the previously reported PAHs in indoor dust from this region. We detected low molecular weight (LMW) with two to four aromatic ring PAHs in all the samples with a significant contribution from Phenanthrene (Phe), present at an average concentration of 1590 ng/g of dust. Although high molecular weight (HMW) (5-6 aromatic ring) PAHs were detected at lower concentrations than LMW PAHs, however, they contributed >90% in the carcinogenic index of PAHs. The estimated daily intake (EDI) of specific PAHs was above the reference dose (RfD) for young children in high-end exposure and the calculated Incremental Lifetime Cancer Risk (ILCR) was >1.00 × 10-4 for both Saudi adults and young children. The study highlighted that indoor pollution has increased significantly during lockdown due to the increased indoor activities and inversely affect human health. This study also warrants to conduct more studies involving different chemicals to understand the indoor environment quality during strict lockdown conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , COVID-19 , Coronavirus , Hidrocarburos Policíclicos Aromáticos , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Niño , Preescolar , Control de Enfermedades Transmisibles , Polvo/análisis , Monitoreo del Ambiente , Humanos , Pandemias , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , SARS-CoV-2 , Arabia Saudita/epidemiología
12.
Environ Sci Pollut Res Int ; 28(11): 13288-13299, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33175356

RESUMEN

In the present study, occurrence of arsenic (As) and lead (Pb) is reported in rural and urban household dust (floor and AC filter dust) of the Kingdom of Saudi Arabia (KSA). Several studies have found concerning concentrations of these toxic metals in indoor dust from different countries, but data from this region is missing. The association between studied toxic metals and different socioeconomic parameters was investigated. Furthermore, health risk associated with these toxic metals via dust exposure was evaluated for the Saudi population. Mean concentration of Pb was several times higher than As in both types of dust samples. AC filter dust was more contaminated with these metals than floor dust. Levels of Pb were up to 775 ppm in AC filter dust from urban areas, while 167 ppm in rural AC filter dust. Different socioeconomic parameters did not influence much on the presence of studied metals in both AC and floor dust. To estimate health risk from contaminated dust hazardous index (HI), hazardous quotient (HQ), and incremental lifetime cancer risk (ILCR) via dust ingestion, inhalation, and dermal contact was calculate using USEPA equations. The ILCR range for both toxic metals was within the tolerable range of reference values of USEPA (1 × 10-5 to 5 × 10-7). Nonetheless, HI was close to 1 for Pb via dust exposure for young urban children, which signifies the risk of non-carcinogenic health problems in studied area. Graphical abstract.


Asunto(s)
Arsénico , Metales Pesados , Niño , Polvo/análisis , Estatus Económico , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Arabia Saudita
13.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35012140

RESUMEN

High raw material prices and rivalry from the food industry have hampered the adoption of renewable resource-based goods. It has necessitated the investigation of cost-cutting strategies such as locating low-cost raw material supplies and adopting cleaner manufacturing processes. Exploiting waste streams as substitute resources for the operations is one low-cost option. The present study evaluates the environmental burden of biopolymer (polyhydroxyalkanoate) production from slaughtering residues. The sustainability of the PHA production process will be assessed utilising the Emergy Accounting methodology. The effect of changing energy resources from business as usual (i.e., electricity mix from the grid and heat provision utilising natural gas) to different renewable energy resources is also evaluated. The emergy intensity for PHA production (seJ/g) shows a minor improvement ranging from 1.5% to 2% by changing only the electricity provision resources. This impact reaches up to 17% when electricity and heat provision resources are replaced with biomass resources. Similarly, the emergy intensity for PHA production using electricity EU27 mix, coal, hydropower, wind power, and biomass is about 5% to 7% lower than the emergy intensity of polyethylene high density (PE-HD). In comparison, its value is up to 21% lower for electricity and heat provision from biomass.

14.
Polymers (Basel) ; 12(11)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171829

RESUMEN

Low nitrogen (N) utilization efficiency due to environmental N losses from fertilizers results in high-cost on-farm production. Urea coating with biodegradable polymers can prevent these losses by controlling the N release of fertilizers. We calculated N release kinetics of coated granular with various biodegradable polymeric materials and its impact on spinach yield and N uptake. Different formulations were used, (i) G-1: 10% starch + 5% polyvinyl alcohol (PVA) + 5% molasses; (ii) G-2: 10% starch + 5% PVA + 5% paraffin wax (PW); (iii) G-3: 5% gelatin + 10% gum arabic + 5% PW; (iv) G-4: 5% molasses + 5% gelatin + 10% gum arabic, to coat urea using a fluidized bed coater. The morphological and X-ray diffraction (XRD) analyses indicated that a uniform coating layer with no new phase formation occurred. In the G-2 treatment, maximum crushing strength (72.9 N) was achieved with a slowed-down N release rate and increased efficiency of 31%. This resulted in increased spinach dry foliage yield (47%), N uptake (60%) and apparent N recovery (ANR: 130%) from G-2 compared to uncoated urea (G-0). Therefore, coating granular urea with biodegradable polymers is a good choice to slower down the N release rate and enhances the crop yield and N utilization efficiency from urea.

15.
Ecotoxicol Environ Saf ; 205: 111099, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829207

RESUMEN

Soil contamination with metallic nanoparticles is increasing due to their increased use in industrial and domestic settings. These nanoparticles are potentially toxic to soil microbes and may affect their associated functions and thereby the nutrient cycling in agro-ecosystems. This study examined the effects of iron oxides nanoparticles (IONPs) on carbon (C) and nitrogen (N) dynamics of poultry (PM) and farmyard manure (FYM) in the soil. The application of IONPs increased iron content in soil microbial biomass, which reflected its consumption by the microbes. As a result, colony-forming units of bacteria and fungi reduced considerably. Such observations lead to a decrease in CO2 emission from PM and FYM by 27 and 28%, respectively. The respective decrease fractions in the case of N mineralization were 24 and 35%. Consequently, soil mineral N content was reduced by 16% from PM and 12% from FYM as compared to their sole application without IONPs. Spinach dry matter yield and apparent N recovery were increased by the use of organic waste (FYM, PM). The use of IONPs significantly reduced the plant N recovery fraction by 26 and 24% (P < 0.05) from PM and FYM, respectively. All the results mentioned above lead us to conclude that IONPs are toxic to soil microbes and affect their function i.e., carbon and N mineralization of applied manure, and thereby the on-farm N cycling from the manure-soil-plant continuum.


Asunto(s)
Compuestos Férricos/toxicidad , Nanopartículas/toxicidad , Ciclo del Nitrógeno , Animales , Biomasa , Carbono , Ecosistema , Fertilizantes , Estiércol/microbiología , Nitrógeno , Aves de Corral , Suelo , Microbiología del Suelo
16.
Food Sci Biotechnol ; 29(4): 513-519, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32296562

RESUMEN

Onion and ginger are rich sources of bioactive compounds which are lost during conventional drying process. The present study was designed to optimize the novel Microwave Assisted Drying and Extraction technique (MADE) for simultaneous drying and extraction/recovery of bioactive compounds from model food products. The time required for drying of samples was 11 (onion) and 16 (ginger) minutes with recovery yield of 87% (onion) and 85% (ginger). The drying time was reduced to 100 times compared to hot air drying and moisture ratio of dried samples was best described by Midilli model. The diffusivities of onion and ginger slices were 1.27 e-11 and 1.43 e-11 m2/s, respectively. Moreover, microwave-based extraction was compared with conventional one. The results of antioxidant activity and total phenolic contents of condensates obtained through MADE were higher compared to conventional method. In short, MADE exhibited better yield of extraction and drying properties compared to conventional methods.

17.
Ecotoxicol Environ Saf ; 189: 109927, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31727497

RESUMEN

In this study a number of heavy metals namely chromium (Cr), cadmium (Cd), zinc (Zn), barium (Ba), copper (Cu), manganese (Mn), cobalt (Co), rubidium (Rb), selenium (Se) are studied in the floor and air condition (AC) filter dust collected from urban and rural households of Saudi Arabia. To the best of our knowledge, many of these heavy metals are reported for the very first time in the indoor dust of Saudi Arabia. Studied metals were higher in urban dust than rural except Mn and Rb which were significantly higher (P < 0.05) in rural dust. All metals, except Cd, Zn, and Ba in urban settings, were detected at higher (P < 0.05) levels in AC filter dust than household floor dust from both rural and urban residential settings. Levels of the two dominant metals i.e., Zn and Mn were up to 1600 and 700 µg/g, respectively in studied dust samples. Also associations between heavy metals and a number of different socio-economic parameters were studied which was significant for some trace metals. In literature exposure to many of trace metals are associated with various health problems, therefore health risk assessment for the Saudi population was calculated by incremental lifetime cancer risk (ILCR) and hazardous index (HI) via dust ingestion, inhalation, and dermal contact. The ILCR for all metals was within the tolerable range of reference values of USEPA (1 × 10- 11 to 1 × 10- 4). However, calculated HI for Mn, Cu, Ni, and Zn was more than 1 via dust exposure, which signifies the non-carcinogenic risk. The study highlights the occurrence of toxic metals in the indoor environments of Saudi Arabia and provides baseline data for future studies on these toxic metals in the region.


Asunto(s)
Polvo/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente , Metales Pesados/análisis , Adulto , Contaminación del Aire Interior/estadística & datos numéricos , Cadmio , Cromo , Cobre , Intoxicación por Metales Pesados , Humanos , Manganeso , Medición de Riesgo , Factores Socioeconómicos , Oligoelementos , Zinc
18.
Int J Phytoremediation ; 21(8): 777-789, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31081349

RESUMEN

The present study aims at evaluating a batch scale biosorption potential of Moringa oleifera leaves (MOL) for the removal of Pb(II) from aqueous solutions. The MOL biomass was characterized by FTIR, SEM, EDX, and BET. The impact of initial concentrations of Pb (II), adsorbent dosage, pH, contact time, coexisting inorganic ions (Ca2+, Na+, K+, Mg2+, CO32-, HCO3-, Cl-), electrical conductivity (EC) and total dissolved salts (TDS) in water was investigated. The results revealed that maximum biosorption (45.83 mg/g) was achieved with adsorbent dosage 0.15 g/100 mL while highest removal (98.6%) was obtained at adsorbent biomass 1.0 g/100 mL and pH 6. The presence of coexisting inorganic ions in water showed a decline in Pb(II) removal (8.5% and 5%) depending on the concentrations of ions. The removal of Pb(II) by MOL decreased from 97% to 89% after five biosorption/desorption cycles with 0.3 M HCl solution. Freundlich model yielded a better fit for equilibrium data and the pseudo-second-order well described the kinetics of Pb(II) biosorption. FTIR spectra showed that -OH, C-H, -C-O, -C = O, and -O-C functional groups were involved in the biosorption of Pb(II). The change in Gibbs free energy (ΔG = -28.10 kJ/mol) revealed that the biosorption process was favorable and thermodynamically driven. The results suggest MOL as a low cost, environment-friendly alternative biosorbent for the remediation of Pb(II) contaminated water.


Asunto(s)
Moringa oleifera , Contaminantes Químicos del Agua , Adsorción , Biodegradación Ambiental , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Plomo
19.
J Environ Manage ; 241: 468-478, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30967352

RESUMEN

Livestock manure is a valuable source of nutrients for plants. However, poor handling practices during storage resulted in nutrient losses from the manure and decrement in its nitrogen (N) fertilizer value. We explored the influence of divergent storage methods on manure chemical composition, carbon (C) and N losses to the environment as well as fertilizer value of storage products after their application to the wheat. Fresh buffalo manure (FM) was subjected to different storage operations for a period of ∼6 months, (i) fermentation by covering with a plastic sheet (CM) (ii) placed under the roof (RM) (iii) heap was unturned (SM) to remain stacked at an open space and (iv) manure heap turned monthly (TM) to make compost. During storage, 8, 24, 45 and 46% of the initial Ntotal was lost from CM, RM, SM, and TM, respectively. The respective C losses from these treatments were 16, 34, 47 and 44% of the initial C content. After stored manures application to the wheat crop, mineral N in the soil remained 27% higher in CM (14.1 vs. 11.1 kg ha-1) and 3% (10.8 vs. 11.1 kg ha-1) lower in SM compared to FM treatment. In contrast, microbial biomass C and N was 35 (509 vs.782 mg C kg-1 soil) and 25% (278 vs.370 mg N kg-1 soil) lower in CM than FM treatment, respectively indicating lower N immobilization of CM in the soil. These findings could result in the highest grain yield (5166 kg ha-1) and N uptake (117 kg ha-1) in CM and the lowest in SM treatments (3105 and 61 kg ha-1, respectively). Similarly, wheat crop recovered 44, 15 and 13% N from CM, TM and SM, respectively. Hence, management operations play a critical role in conserving N during storage phase and after stored manure application to the field. Among the studied operations, storing animal manure under an impermeable plastic sheet is a much better and cheaper option for decreasing N losses during storage and improving wheat yield when incorporated into the soil. Therefore, by adopting this manure storage technique, farmers can improve the agro-environmental value of animal manure in Pakistan.


Asunto(s)
Estiércol , Suelo , Animales , Fertilizantes , Nitrógeno , Nutrientes , Pakistán , Triticum
20.
Chemosphere ; 216: 564-575, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30390587

RESUMEN

Recently, there is a growing interest among agriculturists to use nanotechnology for the development of nutrient-use efficient fertilizers. However, its sustainable use for the synthesis of mineral or organic nano-fertilizers requires a thoughtful of the mechanism as well as the fate of nutrients and their interaction with soil-plant systems. Therefore, the aim of current study was to investigate the mixing of three different application rates of zinc oxide nanoparticles (ZNPs: 1.4, 2.8 and 3.6 mg kg-1 soil) as well as zeolite (141, 282 and 423 mg kg-1 soil) with biogas slurry (AS) on soil nutrient availability and herbage nitrogen (N) and zinc (Zn) uptake in a standard pot experiment. We found that both ZNPs and zeolite significantly increased mineral N content in soil compared to AS alone (P < 0.05). On the other hand, plant available phosphorus or potassium and microbial biomass carbon (C) in the soil were neither significantly affected by any application rate of ZNPs nor zeolite mixed AS. Soil microbial biomass N was significantly higher in second and third application rates of both ZNPs and zeolite amended AS treatments compared to AS alone. However, this increment in mineral N did not influence shoot uptake and herbage apparent recovery of this nutrient from AS. Similarly, co-mixing of both ZNPs and zeolite in AS did not influence shoot N uptake but Zn uptake was significantly higher in this treatment compared to AS alone. Therefore, this combination would be considered for improving crop Zn uptake under such fertilizer management regimes.


Asunto(s)
Biocombustibles , Nanopartículas/química , Nitrógeno/análisis , Nutrientes/metabolismo , Suelo/química , Zeolitas/química , Óxido de Zinc/química , Biomasa , Fertilizantes/análisis , Nutrientes/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA