Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Biochem Med (Zagreb) ; 34(1): 030701, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38125616

Introduction: Paraoxonase 1 (PON1) is the enzyme that removes carcinogenic radicals from lipids. The aim of the study was to investigate the differences in PON1 activity and oxidation stress parameters between patients with cervical intraepithelial neoplasia (CIN) and healthy controls. Materials and methods: The study included 65 women with CIN and 109 healthy women. Lipid parameters were determined on Cobas Integra 400 plus (Roche, Mannheim, Germany). Tiols and reduced glutathione (GSH) were determined spectrophotometric using Eliman reagent. Activity of PON1 was assessed with two substrates, paraoxon and phenylacetate by spectrophotometric method. Malondialdehyde (MDA) was determined by high performance liquid chromatography (Shimadzu Corporation, Kyoto, Japan). Mann-Whitney-test, t-test, χ2-test, correlation and logistic regression was used in statistical analysis. P < 0.05 was considered statistically significant. Results: The basal (P = 0.929) and NaCl-stimulated (P = 0.985) PON1 activity and activities standardised on the concentration of high-density lipoprotein (HDL; P = 0.076; P = 0.065, respectively) and apolipoprotein AI (apo AI; P = 0.444; P = 0.499, respectively) as well as PON1 phenotypes (P = 0.842) did not differ significantly between the groups. The PON1 arylesterase activity (53±19 kU/L vs. 77±17 kU/L; P < 0.001) and HDL-standardized activity (37 (28-44) kU/mmol vs. 43 (37-50) kU/mmol; P < 0.001) and apoAI (29±11 kU/g vs. 44±11 kU/g; P < 0.001) was significantly reduced in the CIN group. The concentration of the thiol groups was similar (P = 0.519), of MDA was lower (0.39 (0.27-0.55) µmol/L vs. 0.76 (0.57-1.15) µmol/L; P < 0.001) and of GSH was higher (112.0 (66.0-129.6) µg/mL vs. 53.4 (34.8-134.4) µg/mL; P < 0.001) in the CIN group. Conclusion: Reduced PON1 arylesterase activity, lower MDA and higher GSH concentration were observed in CIN patients.


Aryldialkylphosphatase , Uterine Cervical Dysplasia , Humans , Female , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Carboxylic Ester Hydrolases , Oxidative Stress
2.
Arh Hig Rada Toksikol ; 74(2): 106-114, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37357882

Ketamine is a dissociative anaesthetic used to induce general anaesthesia in humans and laboratory animals. Due to its hallucinogenic and dissociative effects, it is also used as a recreational drug. Anaesthetic agents can cause toxic effects at the cellular level and affect cell survival, induce DNA damage, and cause oxidant/antioxidant imbalance. The aim of this study was to explore these possible adverse effects of ketamine on hepatocellular HepG2 and neuroblastoma SH-SY5Y cells after 24-hour exposure to a concentration range covering concentrations used in analgesia, drug abuse, and anaesthesia (0.39, 1.56, and 6.25 µmol/L, respectively). At these concentrations ketamine had relatively low toxic outcomes, as it lowered HepG2 and SH-SY5Y cell viability up to 30 %, and low, potentially repairable DNA damage. Interestingly, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) remained unchanged in both cell lines. On the other hand, oxidative stress markers [superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT)] pointed to ketamine-induced oxidant/antioxidant imbalance.


Ketamine , Neuroblastoma , Animals , Humans , Antioxidants/pharmacology , Ketamine/toxicity , Cell Line, Tumor , Neuroblastoma/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Catalase/metabolism , Catalase/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Oxidants/pharmacology , DNA Damage
3.
Arh Hig Rada Toksikol ; 74(1): 34-41, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-37014683

The objective of study was to investigate the effects of different doses of simvastatin and fenofibrate on malondialdehyde (MDA) and reduced glutathione (GSH) in the plasma, liver, and brain tissue of male normolipidaemic and hyperlipidaemic rats. Normolipidaemic (Wistar) rats were receiving 10 or 50 mg/kg a day of simvastatin or 30 or 50 mg/kg a day of fenofibrate. Hyperlipidaemic (Zucker) rats were receiving 50 mg/kg/day of simvastatin or 30 mg/kg/day of fenofibrate. Control normolipidaemic and hyperlipidaemic rats were receiving saline. Simvastatin, fenofibrate, and saline were administered by gavage for three weeks. In normolipidaemic rats simvastatin and fenofibrate showed similar and dose-independent effects on plasma and brain MDA and GSH concentrations. Generally, plasma and brain MDA decreased, while brain GSH concentration increased. In hyperlipidaemic rats simvastatin did not affect plasma and brain MDA and GSH concentrations but significantly decreased liver GSH. Fenofibrate decreased plasma and liver MDA but increased brain MDA. In both rat strains fenofibrate significantly decreased liver GSH concentrations, most likely because fenofibrate metabolites bind to GSH. Our findings suggest that simvastatin acts as an antioxidant only in normolipidaemic rats, whereas fenofibrate acts as an antioxidant in both rat strains.


Fenofibrate , Simvastatin , Rats , Male , Animals , Simvastatin/pharmacology , Simvastatin/therapeutic use , Fenofibrate/pharmacology , Glutathione/metabolism , Antioxidants/pharmacology , Malondialdehyde/metabolism , Malondialdehyde/pharmacology , Rats, Wistar , Rats, Zucker , Liver , Brain
4.
Article En | MEDLINE | ID: mdl-35483776

Aging-related impaired body structure and functions may be, at least partially, caused by elevated oxidative stress. Melatonin (MEL) and resveratrol (RSV) may act as antioxidant and anti-aging compounds, but these actions in experimental animals and humans are controversial. Herein, a rat model of aging was used to study the long-term sex-related effects of MEL and RSV treatment on body mass and blood/plasma parameters of DNA damage, oxidative status (glutathione and malondialdehyde levels), and concentrations of sex hormones. Starting from the age of 3mo, for the next 9mo or 21mo male and female Wistar rats (n = 4-7 per group) were given water to drink (controls) or 0.1 % ethanol in water (vehicle), or MEL or RSV (each 10 mg/L vehicle). DNA damage in whole blood cells was tested by comet assay, whereas in plasma, glutathione, malondialdehyde, and sex hormones were determined by established methods. Using statistical analysis of data by ANOVA/Scheffe post hoc, we observed a similar sex- and aging-dependent rise of body mass in both sexes and drop of plasma testosterone in control and vehicle-treated male rats, whose pattern remained unaffected by MEL and RSV treatment. Compared with controls, all other parameters remained largely unchanged in aging and differently treated male and female rats. We concluded that the sex- and aging-related pattern of growth and various blood parameters in rats were not affected by the long-term treatment with MEL and RSV at the estimated daily doses (300-400 µg/kg b.m.) that exceed usual moderate consumption in humans.


Melatonin , Aging , Animals , Biomarkers , Female , Glutathione , Male , Malondialdehyde , Melatonin/pharmacology , Rats , Rats, Wistar , Resveratrol/pharmacology , Water
5.
Arh Hig Rada Toksikol ; 73(1): 43-47, 2022 Apr 07.
Article En | MEDLINE | ID: mdl-35390240

Ochratoxin A (OTA) and citrinin (CTN) are nephrotoxic mycotoxins often found together in grain. The aim of this study was to measure their accumulation in the kidney and liver of adult male Wistar rats, see how it would be affected by combined treatment, and to determine if resveratrol (RSV) would decrease their levels in these organs. The rats received 125 or 250 mg/kg bw of OTA by gavage every day for 21 days and/or 20 mg/kg bw of CTN a day for two days. Two groups of rats treated with OTA+CTN were also receiving 20 mg/kg bw of RSV a day for 21 days. In animals receiving OTA alone, its accumulation in both organs was dose-dependent. OTA+CTN treatment resulted in lower OTA but higher CTN accumulation in both organs at both OTA doses. RSV treatment increased OTA levels in the kidney and liver and decreased CTN levels in the kidney. Our findings point to the competition between CTN and OTA for organic anion transporters 1 and 3.


Citrinin , Ochratoxins , Animals , Citrinin/toxicity , Kidney , Liver , Male , Ochratoxins/toxicity , Rats , Rats, Wistar
6.
J Ethnopharmacol ; 289: 115092, 2022 May 10.
Article En | MEDLINE | ID: mdl-35143933

ETHNOPHARMACOLOGICAL RELEVANCE: Arctostaphylos uva-ursi (L.) Spreng. (bearberry) is a well-known traditional herbal plant used as a urinary tract disinfectant. Its antiseptic and diuretic properties can be attributed to hydroquinone, obtained by hydrolysis of arbutin. AIM OF THE STUDY: This study aimed to determine the toxic profile of free hydroquinone on urinary bladder cells (T24) as a target of therapeutic action. MATERIALS AND METHODS: Quantitative and qualitative analysis of the extract and the digestive stability and bioavailability of arbutin and hydroquinone were performed by HPLC assay and simulated in vitro digestion, respectively. Cytotoxic effect, reactive oxygen species induction and proteome changes in T24 cells after hydroquinone treatment were determined using Neutral red assay, 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay and mass spectrometry, respectively. RESULTS: Through in vitro digestion, arbutin was stable, but hydroquinone increased after pepsin treatment (109.6%) and then decreased after the small intestine phase (65.38%). The recommended doses of Uva-ursi had a cytotoxic effect on T24 cells only when all hydroquinone conjugates were converted to free hydroquinone (320 and 900 µg/mL) and the toxic effect was enhanced by recovery. One cup of the therapeutic dose had a prooxidative effect after 4 h of incubation. Shorter time of cell exposure (2 h) to hydroquinone did not have any impact on reactive oxygen species induction. Proteomic analysis found 17 significantly up-regulated proteins compared to control. Hydroquinone activated proteins related to oxidative stress response, stress-adaptive signalling, heat shock response and initiation of translation. CONCLUSIONS: Despite the therapeutic properties of bearberry, up-regulated T24 cell proteins are evidence that plant compounds, although from a natural source, may exhibit negative properties.


Arctostaphylos/chemistry , Hydroquinones/toxicity , Plant Extracts/toxicity , Urinary Bladder/drug effects , Arbutin/chemistry , Arbutin/isolation & purification , Caco-2 Cells , Cell Line, Tumor , Chromatography, High Pressure Liquid , Humans , Hydroquinones/isolation & purification , Oxidative Stress/drug effects , Plant Extracts/chemistry , Proteome , Proteomics , Urinary Bladder/cytology
7.
Mycotoxin Res ; 38(1): 61-70, 2022 Feb.
Article En | MEDLINE | ID: mdl-35028911

Ochratoxin A (OTA) and citrinin (CIT) are nephrotoxins found co-occurring in various human/animal food/feed and recognized as a health threat. However, most studies investigate individual effects and neglect their combined nephrotoxic effects in mammals. Previous studies have indicated that organic anion/cation transporters (OATs/OCTs) localized in renal proximal tubules mediate the transport of OTA and CIT. Still, little is known about the in vivo effects of individual/combined OTA and CIT on protein localization/expression of OCTs, physiologically/pharmacologically important renal transporters. Here, we used Western blot and immunofluorescence microscopy to study the effects of subchronic (21-day) exposure to individual/combined OTA (0.125 and 0.250 mg kg-1 b.w.) and CIT (20 mg kg-1 b.w.) on protein localization/expression of organic cation transporters (rOct1/Slc22a1 and rOct2/Slc22a2) in kidneys of Wistar rats. Since the antioxidant resveratrol (RSV) has shown measurable protective effects against OTA- and CIT-related oxidative stress toxicity in vitro, we investigated the effects of an OTA + CIT + RSV combination on rOct1/2 localization/expression in the same model. Individual OTA induced a dose-dependent decrease of rOct1 but not rOct2 protein expression, whereas their localization pattern remained unchanged. Individual CIT did not affect the renal rOct1/2 protein localization/expression. Combined OTA + CIT exposure induced a significant decrease of rOct1 protein expression by an OTA250 dose, whereas oral co-administration of OTA + CIT + RSV resulted in a significant decrease of rOct1/2 protein expression. Thus, we revealed an OTA-related selective effect on the rOct1/2 protein expression and a non-specific adverse effect of RSV in the OTA + CIT + RSV combination on the renal organic cation transport system in rat.


Citrinin , Ochratoxins , Animals , Citrinin/toxicity , Kidney , Organic Cation Transporter 2 , Rats , Rats, Wistar
8.
Arh Hig Rada Toksikol ; 73(4): 256-259, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36607724

Cardiopulmonary bypass (CPB) is an essential technique in cardiac surgery but is also associated with adverse effects, including the systemic inflammatory response syndrome that manifests itself as ischaemia-reperfusion injury and multi-organ dysfunction. The aim of this mini review is to take a look at the current knowledge of resveratrol, a stilbenoid and natural antioxidant believed to have many cardioprotective effects including vasodilation, lowering of blood pressure and reactive oxygen species levels, suppression of low-density lipoprotein peroxidation, and mitigation of ischaemia/-reperfusion injury. We mostly focus on its cardioprotective potential in patients undergoing cardiac surgery supported by CPB. Current findings, however, are still inconclusive and call for further research, including clinical trials.


Antioxidants , Cardiac Surgical Procedures , Humans , Antioxidants/therapeutic use , Resveratrol/therapeutic use , Cardiac Surgical Procedures/adverse effects , Cardiopulmonary Bypass/adverse effects , Cardiopulmonary Bypass/methods , Reactive Oxygen Species
9.
Arh Hig Rada Toksikol ; 72(4): 333-342, 2021 Dec 30.
Article En | MEDLINE | ID: mdl-34985843

Lysergic acid diethylamide (LSD) is a classic hallucinogen, widely abused for decades, while phencyclidine (PCP) has increased in popularity in recent years, especially among the adolescents. Very little is known about the general toxicity of these compounds, especially about their possible neurotoxic effects at the cell level. The aim of this study was to address these gaps by assessing the toxic effects of 24-hour exposure to LSD and PCP in the concentration range of 0.39-100 µmol/L in the human neuroblastoma SH-SY5Y cell line. After cell viability was established, cells treated with concentrations that reduced their viability up to 30 % were further subjected to the alkaline comet assay and biochemical assays that enable estimation of oxidative stress-related effects. Treatment with LSD at 6.25 µmol/L and with PCP at 3.13 µmol/L resulted with 88.06±2.05 and 84.17±3.19 % of viable cells, respectively, and led to a significant increase in primary DNA damage compared to negative control. LSD also caused a significant increase in malondialdehyde level, reactive oxygen species (ROS) production, and glutathione (GSH) level, PCP significantly increased ROS but lowered GSH compared to control. Treatment with LSD significantly increased the activities of all antioxidant enzymes, while PCP treatment significantly increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) but decreased catalase (CAT) activity compared to control. Our findings suggest that LSD has a greater DNA damaging potential and stronger oxidative activity than PCP in SH-SY5Y cells.


Lysergic Acid Diethylamide , Neuroblastoma , Adolescent , Cell Line , Cell Line, Tumor , DNA Damage , Humans , Lysergic Acid Diethylamide/toxicity , Oxidative Stress , Phencyclidine/toxicity , Reactive Oxygen Species , Superoxide Dismutase/metabolism
11.
Toxins (Basel) ; 12(11)2020 11 23.
Article En | MEDLINE | ID: mdl-33238460

Sterigmatocystin (STC) and 5-methoxysterigmatocystin (5-M-STC) are mycotoxins produced by common damp indoor Aspergilli series Versicolores. Since both STC and 5-M-STC were found in the dust of indoor occupational and living areas, their occupants may be exposed to these mycotoxins, primarily by inhalation. Thus, STC and 5-M-STC were intratracheally instilled in male Wistar rats using doses (0.3 mg STC/kg of lung weight (l.w.); 3.6 mg 5-M-STC/kg l.w.; toxin combination 0.3 + 3.6 mg/kg l.w.) that corresponded to concentrations detected in the dust of damp indoor areas in order to explore cytotoxicity, vascular permeability, immunomodulation and genotoxicity. Single mycotoxins and their combinations insignificantly altered lactate-dehydrogenase activity, albumin, interleukin-6, tumor necrosis factor-α and chemokine macrophage inflammatory protein-1α concentrations, as measured by ELISA in bronchioalveolar lavage fluid upon 24 h of treatment. In an alkaline comet assay, both mycotoxins provoked a similar intensity of DNA damage in rat lungs, while in a neutral comet assay, only 5-M-STC evoked significant DNA damage. Hence, naturally occurring concentrations of individual STC may induce DNA damage in rat lungs, in which single DNA strand breaks prevail, while 5-M-STC was more responsible for double-strand breaks. In both versions of the comet assay treatment with STC + 5-M-STC, less DNA damage intensity occurred compared to single mycotoxin treatment, suggesting an antagonistic genotoxic action.


Lung/drug effects , Mutagens/toxicity , Sterigmatocystin/analogs & derivatives , Albumins/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Comet Assay , Cytokines/metabolism , DNA Damage , Drug Interactions , L-Lactate Dehydrogenase/metabolism , Lung/metabolism , Male , Rats, Wistar , Sterigmatocystin/toxicity
12.
Arh Hig Rada Toksikol ; 71(3): 169-177, 2020 Sep 01.
Article En | MEDLINE | ID: mdl-33074169

Oxidative stress occurs when reactive oxygen species (ROS) production overwhelms cell protection by antioxidants. This review is focused on general anaesthesia-induced oxidative stress because it increases the rate of complications and delays recovery after surgery. It is important to know what effects of anaesthetics to expect in terms of oxidative stress, particularly in surgical procedures with high ROS production, because their either additive or antagonistic effect may be pivotal for the outcome of surgery. In vitro and animal studies on this topic are numerous but show large variability. There are not many human studies and what we know has been learned from different surgical procedures measuring different endpoints in blood samples taken mostly before and after surgery. In these studies most intravenous anaesthetics have antioxidative properties, while volatile anaesthetics temporarily increase oxidative stress in longer surgical procedures.


Antioxidants , Oxidative Stress , Anesthesia, Inhalation/adverse effects , Animals , Humans , Reactive Oxygen Species , Superoxide Dismutase/metabolism
13.
Mycotoxin Res ; 36(4): 339-352, 2020 Nov.
Article En | MEDLINE | ID: mdl-32653990

Ochratoxin A (OTA) and citrinin (CIT) are mycotoxins known to co-contaminate human/animal food/feed. Their prominent nephrotoxic effects pose a threat to human and animal health. Studies have shown synergistic or additive effects of these two mycotoxins, but a clear consensus on this phenomenon does not exist. In vitro/vivo studies on OTA and CIT effects showed they elevate oxidative stress parameters. Some in vitro studies tested resveratrol (RSV) as a potential antioxidant to counteract these OTA and CIT effects. However, data on the combined effects of OTA + CIT mycotoxins and RSV on their in vivo toxicity is lacking. We used immunofluorescence microscopy and Western blotting to study the subchronic effects of individual/combined OTA (0.125 and 0.250 mg kg-1 b.w.) and CIT (20 mg kg-1 b.w.) on the localization/expression of rat renal organic anion transporters (rOats) (rOat1/Slc22a6, rOat2/Slc22a7, rOat3/Slc22a8, rOat5/Slc22a19) that mediate the secretion/reabsorption of organic anions in kidney proximal tubules. We investigated if RSV (20 mg kg-1 b.w.) can counteract the effects of both mycotoxins on the localization/expression of studied transporters. Results revealed Oat- and dose-dependent changes in protein expression of rOats. When combined with both mycotoxins, RSV decreased the protein expression of all of the studied rOats. Its effect was additive on Oat1/2/5. Thus, RSV failed to ameliorate OTA- and/or CIT-related nephrotoxic effects on the expression of studied rOats in rat kidneys.


Citrinin/administration & dosage , Kidney/drug effects , Ochratoxins/administration & dosage , Organic Anion Transporters/genetics , Animals , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
14.
Environ Res ; 183: 109166, 2020 04.
Article En | MEDLINE | ID: mdl-32004830

We investigated the level of five non-essential metal(loid)s (As, Cd, Hg, Tl, Pb) and nine essential metals (Mg, Ca, Mn, Fe, Co, Cu, Zn, Se, Mo) in hair and blood components of captive and free-ranging European brown bear populations in Croatia and Poland. Metal(loid) associations with biomarkers of oxidative stress (superoxide dismutase, SOD; glutathione-peroxidase, GSH-Px; malondialdehyde, MDA) and metal exposure (metallothionein, MT) were estimated in this top predatory mammal. Lead was the most abundant non-essential metal(loid) in both blood and hair, with 4 of 35 individuals having blood levels over 100 µg/L. A positive association was found between Pb level and SOD activity in blood. Free-ranging bears had higher blood SOD activity, Mn, Zn and Cd levels, hair Co, Cd, Tl and Pb compared to captive individuals, while the opposite was true for Mg and hair Ca thereby reflecting habitat and diet differences. With increasing age, animals showed lower levels of SOD activity and certain essential metals. Females had higher SOD activity and blood levels of some essential metals than males. Hair showed a higher Fe and Co level when sampled during the growth phase and was not predictive of non-essential metal(loid) blood levels. The established metal(loid) baseline values will enable future risk assessment in both captive and wild European brown bear populations.


Biomarkers , Metals, Heavy , Ursidae , Animals , Croatia , Female , Male , Metals , Metals, Heavy/analysis , Metals, Heavy/toxicity , Poland
15.
J Trace Elem Med Biol ; 53: 98-108, 2019 May.
Article En | MEDLINE | ID: mdl-30910215

Metallothioneins (MTs) exhibit binding affinity for several essential and toxic trace elements. Previous studies in rodents indicated sex differences in the hepatic and renal expression of MTs and concentrations of various elements. The mechanism responsible for these differences has not been resolved. Here, in the liver and kidney tissues of sham-operated and gonadectomized male and female rats we determined the expression of MT1 and MT2 (MT1&2) mRNA by RT-PCR, abundance of MT1&2 proteins by Western blotting and immunocytochemistry, concentrations of essential (Fe, Zn, Cu, Co) and toxic (Cd, Hg, Pb) elements by ICP-MS, and oxidative status parameters (SOD, GPx, MDA, GSH) by biochemical methods. In both organs, the expression of MT1&2 mRNA and MT1&2 proteins was female-dominant, upregulated by castration, and downregulated by ovariectomy. Concentrations of Fe in the liver and Co in the kidneys followed the same pattern. Most other elements (Zn, Cu, Cd, Hg) exhibited female- or male-dominant sex differences, affected by gonadectomy in one or both organs. Pb was sex- and gonadectomy-unaffected. GPx and MDA were elevated and associated with the highest concentrations of Fe only in the female liver. We conclude that the sex-dependent expression of MT1&2 mRNA and proteins in the rat liver and kidneys may include different mechanisms. In the liver, the female-dominant tissue concentrations of Fe may generate oxidative stress which is a potent enhancer of MTs production, whereas in kidneys, the female-dominant expression of MTs may be unrelated to Fe-mediated oxidative stress.


Castration , Kidney/chemistry , Liver/chemistry , Metallothionein/genetics , Sex Characteristics , Trace Elements/analysis , Animals , Female , Male , Metallothionein/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
16.
Exp Physiol ; 103(12): 1666-1678, 2018 12.
Article En | MEDLINE | ID: mdl-30242929

NEW FINDINGS: What is the central question of this study? What is the effect of cigarette smoke on cell death, oxidative damage, expression of heat shock proteins (HSPs) and activation of mitogen-activated protein kinases (MAPKs) in A549 alveolar epithelial cells? What is the main finding and its importance? Cigarette smoke induces cytotoxicity and oxidative damage to A549 cells, increases expression of different HSPs and activates MAPK signalling pathways. This could be related to inflammatory response and apoptosis observed in lungs of patients with smoking-related diseases. ABSTRACT: Cigarette smoking is one of the main risk factors for development of chronic obstructive pulmonary disease (COPD). We previously reported that cigarette smoke (CS) induces damage to proteins and their ineffective degradation. Here, we hypothesize that CS could induce oxidative stress and cytotoxicity in lung epithelial cells through alterations of heat shock protein (HSP) expression and mitogen-activated protein kinase (MAPK) signalling pathways. We exposed A549 alveolar epithelial cells to various concentrations of cigarette smoke extract (CSE). Higher concentrations of CSE caused apoptosis of A549 cells after 4 h, while after 24 h cell viability was decreased, and lactate dehydrogenase in cell culture medium was increased as well as the number of necrotic cells. Concentrations of malondialdehyde (MDA) were elevated, while total thiol groups were decreased. Changes in the expression of HSPs (HSP70, HSP32 and HSP27) were time-dependent. After 6 h, CSE caused an increase in the expression of HSP70 and HSP32, while after 8 h all examined HSPs were up-regulated and remained increased up to 48 h. Treatment of A549 cells with CSE stimulated phosphorylation of extracellular signal-regulated kinase and p38 in a dose-dependent manner, while c-Jun N-terminal kinase activation was not detected. By using specific inhibitors, we demonstrated that MAPKs and HSPs interplay in CSE effects. In conclusion, our results show that MAPKs and HSPs are involved in the mechanism underlying CSE-induced cytotoxicity and oxidative damage to A549 alveolar epithelial cells. These processes could be related to inflammatory response and apoptosis observed in lungs of patients with smoking-related diseases, such as COPD.


Alveolar Epithelial Cells/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nicotiana/adverse effects , Smoke/adverse effects , Smoking/metabolism , A549 Cells , Apoptosis/physiology , Cell Line, Tumor , Cell Survival/physiology , Heat-Shock Proteins/metabolism , Humans , L-Lactate Dehydrogenase/metabolism , Lung/metabolism , MAP Kinase Signaling System/physiology , Malondialdehyde/metabolism , Oxidative Stress/physiology , Pulmonary Disease, Chronic Obstructive/metabolism , Up-Regulation/physiology
17.
Toxicon ; 146: 99-105, 2018 May.
Article En | MEDLINE | ID: mdl-29524438

A multimycotoxin analysis approach in grains results in frequent simultaneous findings of nephrotoxic mycotoxins ochratoxin A (OTA) and citrinin (CTN). The mechanism of CTN and OTA toxicities in biological systems is not fully understood but it is known that oxidative stress is involved. In this study, oxidative damage of DNA, lipids, and the concentration of glutathione (GSH), as well as possible antioxidative effects of resveratrol (RSV) were studied in vivo. Male adult Wistar rats were treated orally with OTA (0.125 and 0.250 mg kg-1 b.w.), RSV (20 mg kg-1 b.w.) for 21 days, CTN (20 mg kg-1 b.w.) for two days or with their combinations. The hOGG1 modified comet assay revealed kidneys and liver oxidative DNA damage in OTA + CTN treated animals, which was not reversed by RSV. CTN did not reduce glutathione (GSH) or increase malondialdehyde (MDA) concentration in any tissue, while OTA reduced kidneys GSH and increased kidneys and liver MDA. RSV increased GSH concentrations in all tissues and decreased MDA concentration in the liver only. Oxidative stress is involved in the toxicity of OTA and CTN but it seems that it differs significantly in organs. Most of the effects on GSH and MDA in combined toxicity may be attributed to the toxic effects of OTA. RSV was effective in restoring the depleted GSH in all tissues but had no effect on the MDA concentration and DNA damage.


Citrinin/toxicity , Kidney/drug effects , Liver/drug effects , Ochratoxins/toxicity , Animals , Antioxidants/pharmacology , DNA Damage/drug effects , Glutathione/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Resveratrol/pharmacology
19.
Croat Med J ; 56(5): 447-59, 2015 Oct.
Article En | MEDLINE | ID: mdl-26526882

AIM: To investigate whether the sex-dependent expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) changes in a rat model of ethylene glycol (EG)-induced hyperoxaluria. METHODS: Rats were given tap water (12 males and 12 females; controls) or EG (12 males and 12 females; 0.75% v/v in tap water) for one month. Oxaluric state was confirmed by biochemical parameters in blood plasma, urine, and tissues. Expression of sat-1 and rate-limiting enzymes of oxalate synthesis, alcohol dehydrogenase 1 (Adh1) and hydroxy-acid oxidase 1 (Hao1), was determined by immunocytochemistry (protein) and/or real time reverse transcription polymerase chain reaction (mRNA). RESULTS: EG-treated males had significantly higher (in µmol/L; mean±standard deviation) plasma (59.7±27.2 vs 12.9±4.1, P<0.001) and urine (3716±1726 vs 241±204, P<0.001) oxalate levels, and more abundant oxalate crystaluria than controls, while the liver and kidney sat-1 protein and mRNA expression did not differ significantly between these groups. EG-treated females, in comparison with controls had significantly higher (in µmol/L) serum oxalate levels (18.8±2.9 vs 11.6±4.9, P<0.001), unchanged urine oxalate levels, low oxalate crystaluria, and significantly higher expression (in relative fluorescence units) of the liver (1.59±0.61 vs 0.56±0.39, P=0.006) and kidney (1.77±0.42 vs 0.69±0.27, P<0.001) sat-1 protein, but not mRNA. The mRNA expression of Adh1 was female-dominant and that of Hao1 male-dominant, but both were unaffected by EG treatment. CONCLUSIONS: An increased expression of hepatic and renal oxalate transporting protein sat-1 in EG-treated female rats could protect from hyperoxaluria and oxalate urolithiasis.


Anion Transport Proteins/metabolism , Antiporters/metabolism , Ethylene Glycol/therapeutic use , Hyperoxaluria/prevention & control , Kidney/drug effects , Liver/drug effects , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Animals , Anion Transport Proteins/genetics , Antiporters/genetics , Blotting, Western , Calcium Oxalate/blood , Calcium Oxalate/urine , Chromatography, High Pressure Liquid , Female , Hyperoxaluria/metabolism , Kidney/metabolism , Liver/metabolism , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Sex Factors , Sulfate Transporters
20.
Ecotoxicol Environ Saf ; 120: 206-14, 2015 Oct.
Article En | MEDLINE | ID: mdl-26086577

Aspergillus sclerotiorum (AS) is a well-known producer of ochratoxin A (OTA) while Aspergillus pseudoglaucus (AP) produces a wide range of extrolites with poorly investigated toxicity. These species are frequently co-occur in grain mill aeromycota. The aim of this study was to determine OTA levels in spore extracts using HPLC and immunoaffinity columns, and to examine the cytotoxicity of pure OTA, OTA-positive (AS-OTA(+)) and OTA-negative (AS-OTA(-)) spore extracts, as well as of AP spore extract, on human lung adenocarcinoma cells A549, individually and in combination, using a colorimetric MTT test (540nm). To establish which type of cell death predominated after treatments, a quantitative fluorescent assay with ethidium bromide and acridine orange was used, and the level of primary DNA damage in A549 cells was evaluated using the alkaline comet assay. OTA was detected in spore extracts (0.3-28µg/mL) of 3/6 of the AS strains, while none of the tested AP strains were able to produce OTA. Taking into account the maximum detected concentration of OTA in the spores, the daily intake of OTA by inhalation was calculated to be 1ng/kg body weight (b.w.), which is below the tolerable daily intake for OTA (17ng/kg b.w.). Using the MTT test, the following IC50 values were obtained: single OTA (53µg/mL); AS-OTA(+) (mass concentration 934µg/mL corresponds to 10.5µg/mL of OTA in spore extract); and 2126µg/mL for AP. The highest applied concentration of AS-OTA(-) spore extract (4940µg/mL) decreased cell viability by 30% and IC50 for the extract could not be determined. Single OTA and AS-OTA(+) and combinations (AP+AS-OTA(+) and AP+AS-OTA(-)) in subtoxic concentrations provoked significant primary DNA damage, apoptosis, and to a lesser extent, necrosis in A549 cells. Mixture of AP+AS-OTA(+) and AP+AS-OTA(-) in subtoxic concentrations showed dominant additive interactions. Despite the low calculated daily intake of OTA by inhalation, our results suggest that chronic exposure to high levels of OTA-producing airborne fungi in combination with other more or less toxic moulds pose a significant threat to human health due to their possible additive and/or synergistic interactions.


Aspergillus/chemistry , DNA Damage/drug effects , Ochratoxins/toxicity , Air Microbiology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Comet Assay , Humans , Inhibitory Concentration 50 , Linear Models , Lung/cytology , Lung/drug effects , Spores, Fungal
...