Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zootaxa ; 5415(3): 493-498, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38480188

RESUMEN

We describe the new genus and species Stolleagrion foghnielseni n. gen. et sp. from the Fur Formation in northwestern Denmark based on a single fossil wing. This is the first odonatan described from the earliest part of the PETM recovery phase of the early Eocene. A combination of nine wing character states are considered to be diagnostic of the Dysagrionidae Cockrell only together with the cephalozygopteran head; however, the combination of these nine plus the presence of Ax0 is also diagnostic without the head. By this, we assign Stolleagrion foghnielseni to the Dysagrionidae and reassess the position of other odonates previously treated as cf. Dysagrionidae.


Asunto(s)
Odonata , Animales , Fósiles , Alas de Animales
2.
Zootaxa ; 5278(2): 289-317, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37518283

RESUMEN

The earliest Eocene odonate genus Furagrion Petrulevicius et al. from the Danish Fur Formation is revised based on eighteen specimens, two of which apparently have been lost since their publication. The holotype of Phenacolestes jutlandicus Henriksen, type species of Furagrion, is incomplete and lacks the characters currently used to differentiate species, genera and higher taxa in Odonata. We, therefore, propose that the holotype is set aside and a recently discovered nearly complete Fur Formation fossil is designated as neotype. Furagrion possesses all of the nine wing character states currently used along with head shape for diagnosing the Dysagrionidae; however, Furagrion has a characteristically zygopteran head, not the distinctive head shape of the suborder Cephalozygoptera. We, therefore, treat it as a zygopteran unassigned to family. These nine wing character states appear in different combinations not only in various Zygoptera and Cephalozygoptera, but also in the Frenguelliidae, an Eocene family of Argentina that may represent an unnamed suborder. We recognise these taxa as constituting a dysagrionoid grade, in which these character states appear either convergently or as symplesiomorphies. Furagrion morsi Zessin is synonymized with Phenacolestes jutlandicus Henriksen, syn. nov. and Morsagrion Zessin with Furagrion Petrulevicius, Wappler, Wedmann, Rust, and Nel, syn. nov.


Asunto(s)
Odonata , Animales , Fósiles , Alas de Animales
3.
Zootaxa ; 5099(5): 586-592, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35391395

RESUMEN

We propose Danowhetaksa n. gen. (Odonata: Whetwhetaksidae) with two new species: D. birgitteae n. gen. et sp. and D. rusti n. gen. et sp. from the earliest Ypresian Stolleklint clay of the lst Formation in northwestern Denmark. Whetwhetaksidae has previously been known only from the Ypresian Okanagan Highlands of far-western North America, the new records are, therefore, the first from the Palearctic Region.


Asunto(s)
Odonata , Animales , Fósiles
4.
Geobiology ; 17(1): 12-26, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30264482

RESUMEN

The early Cambrian Sirius Passet fauna of northernmost Greenland (Cambrian Series 2, Stage 3) contains exceptionally preserved soft tissues that provide an important window to early animal evolution, while the surrounding sediment holds critical data on the palaeodepositional water-column chemistry. The present study combines palaeontological data with a multiproxy geochemical approach based on samples collected in situ at high stratigraphic resolution from Sirius Passet. After careful consideration of chemical alterations during burial, our results demonstrate that fossil preservation and biodiversity show significant correlation with iron enrichments (FeHR /FeT ), trace metal behaviour (V/Al), and changes in nitrogen cycling (δ15 N). These data, together with Mo/Al and the preservation of organic carbon (TOC), are consistent with a water column that was transiently low in oxygen concentration, or even intermittently anoxic. When compared with the biogeochemical characteristics of modern oxygen minimum zones (OMZs), geochemical and palaeontological data collectively suggest that oxygen concentrations as low as 0.2-0.4 ml/L restricted bioturbation but not the development of a largely nektobenthic community of predators and scavengers. We envisage for the Sirius Passet biota a depositional setting where anoxic water column conditions developed and passed over the depositional site, possibly in association with sea-level change, and where this early Cambrian biota was established in conditions with very low oxygen.


Asunto(s)
Evolución Biológica , Ecosistema , Fósiles , Sedimentos Geológicos/química , Oxígeno/análisis , Agua de Mar/química , Groenlandia , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA