Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 803730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096652

RESUMEN

Campylobacter jejuni is a major cause of food poisoning worldwide, and remains the main infective agent in gastroenteritis and related intestinal disorders in Europe and the USA. As with all bacterial infections, the stages of adhesion to host tissue, survival in the host and eliciting disease all require the synthesis of proteinaceous virulence factors on the ribosomes of the pathogen. Here, we describe how C. jejuni virulence is attenuated by altering the methylation of its ribosomes to disrupt the composition of its proteome, and how this in turn provides a means of identifying factors that are essential for infection and pathogenesis. Specifically, inactivation of the C. jejuni Cj0588/TlyA methyltransferase prevents methylation of nucleotide C1920 in the 23S rRNA of its ribosomes and reduces the pathogen's ability to form biofilms, to attach, invade and survive in host cells, and to provoke the innate immune response. Mass spectrometric analyses of C. jejuni TlyA-minus strains revealed an array of subtle changes in the proteome composition. These included reduced amounts of the cytolethal distending toxin (CdtC) and the MlaEFD proteins connected with outer membrane vesicle (OMV) production. Inactivation of the cdtC and mlaEFD genes confirmed the importance of their encoded proteins in establishing infection. Collectively, the data identify a subset of genes required for the onset of human campylobacteriosis, and serve as a proof of principle for use of this approach in detecting proteins involved in bacterial pathogenesis.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/metabolismo , Humanos , Metilación , Ribosomas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-32229491

RESUMEN

Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A ß-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.


Asunto(s)
Colistina , Klebsiella pneumoniae , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Mutación , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA