Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7774, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012131

RESUMEN

Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging. Here we present LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of lipid and lipid-like densities in cryo-EM structures. The pipeline integrates the implementation and analysis of multi-scale MD simulations for identification, ranking and refinement of lipid binding poses which superpose onto cryo-EM map densities. Thus, LipIDens enables direct integration of experimental and computational structural approaches to facilitate the interpretation of lipid-like cryo-EM densities and to reveal the molecular identities of protein-lipid interactions within a bilayer environment. We demonstrate this by application of our open-source LipIDens code to ten diverse membrane protein structures which exhibit lipid-like densities.


Asunto(s)
Proteínas de la Membrana , Simulación de Dinámica Molecular , Proteínas de la Membrana/química , Microscopía por Crioelectrón , Lípidos de la Membrana , Conformación Proteica
2.
ACS Biomater Sci Eng ; 9(8): 4821-4830, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37441793

RESUMEN

Drug loading of polymer micelles can have a profound effect on their particle size and morphology as well as their physicochemical properties. In turn, this influences performance in biological environments. For oral delivery of drugs, the intestinal environment is key, and consequently, a thorough structural understanding of what happens at this material-biology interface is required to understand in vivo performance and tailor improved delivery vehicles. In this study, we address this interface in vitro through a detailed structural characterization of the colloidal assemblies of polymeric micelles based on poly(2-oxazolines) with three different guest loadings with the natural product curcumin (17-52 wt %) in fed-state simulated intestinal fluids (FeSSIF). For this, we employ NMR spectroscopy, in particular, 1H NMR, 1H-1H-NOESY, and 1H DOSY experiments complemented by quantum chemical calculations and cryo-TEM measurements. Through this mixture of methods, we identified curcumin-taurocholate interactions as central interaction patterns alongside interactions with the polymer and lipids. Furthermore, curcumin molecules can be exchanged between polymer micelles and bile colloids, an important prerequisite for their uptake. Finally, increased loading of the polymer micelles with curcumin resulted in a larger number of vesicles as taurocholate─through coordination with Cur─is less available to form nanoparticles with the lipids. The loading-dependent behavior found in this study deviates from previous work on a different drug substance highlighting the need for further studies including different drug molecules and polymer types to improve the understanding of events on the molecular level.


Asunto(s)
Antineoplásicos , Curcumina , Micelas , Curcumina/química , Polímeros/química , Lípidos
3.
Membranes (Basel) ; 13(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37233526

RESUMEN

Kef couples the potassium efflux with proton influx in gram-negative bacteria. The resulting acidification of the cytosol efficiently prevents the killing of the bacteria by reactive electrophilic compounds. While other degradation pathways for electrophiles exist, Kef is a short-term response that is crucial for survival. It requires tight regulation since its activation comes with the burden of disturbed homeostasis. Electrophiles, entering the cell, react spontaneously or catalytically with glutathione, which is present at high concentrations in the cytosol. The resulting glutathione conjugates bind to the cytosolic regulatory domain of Kef and trigger activation while the binding of glutathione keeps the system closed. Furthermore, nucleotides can bind to this domain for stabilization or inhibition. The binding of an additional ancillary subunit, called KefF or KefG, to the cytosolic domain is required for full activation. The regulatory domain is termed K+ transport-nucleotide binding (KTN) or regulator of potassium conductance (RCK) domain, and it is also found in potassium uptake systems or channels in other oligomeric arrangements. Bacterial RosB-like transporters and K+ efflux antiporters (KEA) of plants are homologs of Kef but fulfill different functions. In summary, Kef provides an interesting and well-studied example of a highly regulated bacterial transport system.

4.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499396

RESUMEN

The ability to cope with and adapt to changes in the environment is essential for all organisms. Osmotic pressure is a universal threat when environmental changes result in an imbalance of osmolytes inside and outside the cell which causes a deviation from the normal turgor. Cells have developed a potent system to deal with this stress in the form of mechanosensitive ion channels. Channel opening releases solutes from the cell and relieves the stress immediately. In bacteria, these channels directly sense the increased membrane tension caused by the enhanced turgor levels upon hypoosmotic shock. The mechanosensitive channel of small conductance, MscS, from Escherichia coli is one of the most extensively studied examples of mechanically stimulated channels. Different conformational states of this channel were obtained in various detergents and membrane mimetics, highlighting an intimate connection between the channel and its lipidic environment. Associated lipids occupy distinct locations and determine the conformational states of MscS. Not all these features are preserved in the larger MscS-like homologues. Recent structures of homologues from bacteria and plants identify common features and differences. This review discusses the current structural and functional models for MscS opening, as well as the influence of certain membrane characteristics on gating.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Presión Osmótica , Membranas/metabolismo , Bacterias/metabolismo , Mecanotransducción Celular
5.
J Colloid Interface Sci ; 606(Pt 2): 1179-1192, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34487937

RESUMEN

Many drugs and drug candidates are poorly water-soluble. Intestinal fluids play an important role in their solubilization. However, the interactions of intestinal fluids with polymer excipients, drugs and their formulations are not fully understood. Here, diffusion ordered spectroscopy (DOSY) and nuclear Overhauser effect spectroscopy (NOESY), complemented by cryo-TEM were employed to address this. Efavirenz (EFV) as model drug, the triblock copolymers Pluronic® F-127 (PF127) and poly(2-oxazoline) based pMeOx-b-pPrOzi-b-pMeOx (pOx/pOzi) and their respective formulations were studied in simulated fed-state intestinal fluid (FeSSIF). For the individual polymers, the bile interfering nature of PF127 was confirmed and pure pOx/pOzi was newly classified as non-interfering. A different and more complex behaviour was however observed if EFV was involved. PF127/EFV formulations in FeSSIF showed concentration dependent aggregation with separate colloids at low formulation concentrations, a merging of individual particles at the solubility limit of EFV in FeSSIF and joint aggregates above this concentration. In the case of pOx/pOzi/EFV formulations, coincident diffusion coefficients for pOx/pOzi, lipids and EFV indicate joint aggregates across the studied concentration range. This demonstrates that separate evaluation of polymers and drugs in biorelevant media is not sufficient and their mixtures need to be studied to learn about concentration and composition dependent behaviour.


Asunto(s)
Benzoxazinas , Poloxámero , Alquinos , Ciclopropanos , Excipientes , Solubilidad
6.
Nat Commun ; 12(1): 6498, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764272

RESUMEN

Cytochrome bd quinol:O2 oxidoreductases are respiratory terminal oxidases so far only identified in prokaryotes, including several pathogenic bacteria. Escherichia coli contains two bd oxidases of which only the bd-I type is structurally characterized. Here, we report the structure of the Escherichia coli cytochrome bd-II type oxidase with the bound inhibitor aurachin D as obtained by electron cryo-microscopy at 3 Å resolution. The oxidase consists of subunits AppB, C and X that show an architecture similar to that of bd-I. The three heme cofactors are found in AppC, while AppB is stabilized by a structural ubiquinone-8 at the homologous positions. A fourth subunit present in bd-I is lacking in bd-II. Accordingly, heme b595 is exposed to the membrane but heme d embedded within the protein and showing an unexpectedly high redox potential is the catalytically active centre. The structure of the Q-loop is fully resolved, revealing the specific aurachin binding.


Asunto(s)
Citocromos/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Quinolonas/metabolismo , Ubiquinona/metabolismo
7.
Viruses ; 13(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834922

RESUMEN

(1) Background: During maturation of the Hepatitis B virus, a viral polymerase inside the capsid transcribes a pre-genomic RNA into a partly double stranded DNA-genome. This is followed by envelopment with surface proteins inserted into a membrane. Envelopment is hypothetically regulated by a structural signal that reports the maturation state of the genome. NMR data suggest that such a signal can be mimicked by the binding of the detergent Triton X 100 to hydrophobic pockets in the capsid spikes. (2) Methods: We have used electron cryo-microscopy and image processing to elucidate the structural changes that are concomitant with the binding of Triton X 100. (3) Results: Our maps show that Triton X 100 binds with its hydrophobic head group inside the pocket. The hydrophilic tail delineates the outside of the spike and is coordinated via Lys-96. The binding of Triton X 100 changes the rotamer conformation of Phe-97 in helix 4, which enables a π-stacking interaction with Trp-62 in helix 3. Similar changes occur in mutants with low secretion phenotypes (P5T and L60V) and in a mutant with a pre-mature secretion phenotype (F97L). (4) Conclusion: Binding of Triton X 100 is unlikely to mimic structural maturation because mutants with different secretion phenotypes show similar structural responses.


Asunto(s)
Cápside/química , Virus de la Hepatitis B/metabolismo , Hepatitis B/virología , Fenilalanina/química , Secuencias de Aminoácidos , Cápside/metabolismo , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Antígenos del Núcleo de la Hepatitis B/química , Antígenos del Núcleo de la Hepatitis B/genética , Antígenos del Núcleo de la Hepatitis B/metabolismo , Virus de la Hepatitis B/química , Virus de la Hepatitis B/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fenilalanina/genética , Fenilalanina/metabolismo , Virión/química , Virión/genética , Virión/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34376558

RESUMEN

The mechanosensitive channel of small conductance (MscS) protects bacteria against hypoosmotic shock. It can sense the tension in the surrounding membrane and releases solutes if the pressure in the cell is getting too high. The membrane contacts MscS at sensor paddles, but lipids also leave the membrane and move along grooves between the paddles to reside as far as 15 Å away from the membrane in hydrophobic pockets. One sensing model suggests that a higher tension pulls lipids from the grooves back to the membrane, which triggers gating. However, it is still unclear to what degree this model accounts for sensing and what contribution the direct interaction of the membrane with the channel has. Here, we show that MscS opens when it is sufficiently delipidated by incubation with the detergent dodecyl-ß-maltoside or the branched detergent lauryl maltose neopentyl glycol. After addition of detergent-solubilized lipids, it closes again. These results support the model that lipid extrusion causes gating: Lipids are slowly removed from the grooves and pockets by the incubation with detergent, which triggers opening. Addition of lipids in micelles allows lipids to migrate back into the pockets, which closes the channel even in the absence of a membrane. Based on the distribution of the aliphatic chains in the open and closed conformation, we propose that during gating, lipids leave the complex on the cytosolic leaflet at the height of highest lateral tension, while on the periplasmic side, lipids flow into gaps, which open between transmembrane helices.


Asunto(s)
Membrana Celular/fisiología , Activación del Canal Iónico/fisiología , Metabolismo de los Lípidos , Mecanotransducción Celular/fisiología , Dominio Catalítico , Lípidos/química , Modelos Moleculares , Presión Osmótica , Conformación Proteica
9.
Trends Biochem Sci ; 46(8): 623-625, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33879366

RESUMEN

The bacterial mechanosensitive channel of small conductance (MscS) is a well-studied model of how mechanical forces from the membrane can be sensed by an embedded protein. A recent study by Zhang et al. visualizes how MscS behaves under membrane tension, entering a desensitized state when it loses all coordinated lipids.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Modelos Moleculares
10.
Proc Natl Acad Sci U S A ; 117(46): 28754-28762, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33148804

RESUMEN

The mechanosensitive channel of small conductance (MscS) is the prototype of an evolutionarily diversified large family that fine-tunes osmoregulation but is likely to fulfill additional functions. Escherichia coli has six osmoprotective paralogs with different numbers of transmembrane helices. These helices are important for gating and sensing in MscS but the role of the additional helices in the paralogs is not understood. The medium-sized channel YnaI was extracted and delivered in native nanodiscs in closed-like and open-like conformations using the copolymer diisobutylene/maleic acid (DIBMA) for structural studies. Here we show by electron cryomicroscopy that YnaI has an extended sensor paddle that during gating relocates relative to the pore concomitant with bending of a GGxGG motif in the pore helices. YnaI is the only one of the six paralogs that has this GGxGG motif allowing the sensor paddle to move outward. Access to the pore is through a vestibule on the cytosolic side that is fenestrated by side portals. In YnaI, these portals are obstructed by aromatic side chains but are still fully hydrated and thus support conductance. For comparison with large-sized channels, we determined the structure of YbiO, which showed larger portals and a wider pore with no GGxGG motif. Further in silico comparison of MscS, YnaI, and YbiO highlighted differences in the hydrophobicity and wettability of their pores and vestibule interiors. Thus, MscS-like channels of different sizes have a common core architecture but show different gating mechanisms and fine-tuned conductive properties.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Microscopía por Crioelectrón , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/química , Canales Iónicos/ultraestructura , Metabolismo de los Lípidos
11.
Mol Pharm ; 17(12): 4704-4708, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33118829

RESUMEN

Controlling physicochemical properties of light-unresponsive drugs, by light, prima facie, a paradox approach. We expanded light control by ion pairing light-unresponsive salicylate or ibuprofen to photoswitchable azobenzene counterions, thereby reversibly controlling supramolecular structures, hence the drugs' physicochemical and kinetic properties. The resulting ion pairs photoliquefied into room-temperature ionic liquids under ultraviolet light. Aqueous solutions showed trans-cis-dependent supramolecular structures under a light with wormlike aggregates decomposing into small micelles and vice versa. Light control allowed for permeation through membranes of cis-ibuprofen ion pairs within 12 h in contrast to the trans ion pairs requiring 72 h. In conclusion, azobenzene ion-pairing expands light control of physicochemical and kinetic properties to otherwise light-unresponsive drugs.


Asunto(s)
Líquidos Iónicos/efectos de la radiación , Rayos Ultravioleta , Compuestos Azo/química , Compuestos Azo/farmacocinética , Compuestos Azo/efectos de la radiación , Química Farmacéutica , Ibuprofeno/química , Ibuprofeno/farmacocinética , Ibuprofeno/efectos de la radiación , Líquidos Iónicos/química , Líquidos Iónicos/farmacocinética , Estructura Molecular , Permeabilidad , Salicilatos/química , Salicilatos/farmacocinética , Salicilatos/efectos de la radiación , Agua/química
12.
Nat Commun ; 10(1): 5138, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723136

RESUMEN

Cytochrome bd oxidases are terminal reductases of bacterial and archaeal respiratory chains. The enzyme couples the oxidation of ubiquinol or menaquinol with the reduction of dioxygen to water, thus contributing to the generation of the protonmotive force. Here, we determine the structure of the Escherichia coli bd oxidase treated with the specific inhibitor aurachin by cryo-electron microscopy (cryo-EM). The major subunits CydA and CydB are related by a pseudo two fold symmetry. The heme b and d cofactors are found in CydA, while ubiquinone-8 is bound at the homologous positions in CydB to stabilize its structure. The architecture of the E. coli enzyme is highly similar to that of Geobacillus thermodenitrificans, however, the positions of heme b595 and d are interchanged, and a common oxygen channel is blocked by a fourth subunit and substituted by a more narrow, alternative channel. Thus, with the same overall fold, the homologous enzymes exhibit a different mechanism.


Asunto(s)
Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Homología de Secuencia de Aminoácido , Grupo Citocromo b/ultraestructura , Proteínas del Complejo de Cadena de Transporte de Electrón/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Geobacillus/enzimología , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Oxidorreductasas/ultraestructura , Oxígeno/metabolismo , Protones , Especificidad por Sustrato , Ubiquinona/química , Ubiquinona/metabolismo , Agua
13.
J Mol Biol ; 431(17): 3081-3090, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291591

RESUMEN

Since life has emerged, gradients of osmolytes over the cell membrane cause pressure changes in the cell and require tight regulation to prevent cell rupture. The mechanosensitive channel of small conductance (MscS) releases solutes and water when a hypo-osmotic shock raises the pressure in the cell. It is a member of a large family of MscS-like channels found in bacteria, archaea, fungi and plants and model for mechanosensation. MscS senses the increase of tension in the membrane directly by the force from the lipids, but the molecular mechanism is still elusive. We determined the lipid interactions of MscS by resolving the structure of Escherichia coli MscS embedded in membrane discs to 2.9-Å resolution using cryo-electron microscopy. The membrane is attached only to parts of the sensor paddles of MscS, but phospholipid molecules move through grooves into remote pockets on the cytosolic side. On the periplasmic side, a lipid bound by R88 at the pore entrance is separated from the membrane by TM1 helices. The N-terminus interacts with the periplasmic membrane surface. We demonstrate that the unique membrane domain of MscS promotes deep penetration of lipid molecules and shows multimodal interaction with the membrane to fine-tune tension sensing.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Fenómenos Biofísicos , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Membranas/metabolismo , Modelos Moleculares , Presión Osmótica , Fosfolípidos , Conformación Proteica
14.
J Mol Biol ; 431(17): 3339-3352, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173776

RESUMEN

All membrane proteins have dynamic and intimate relationships with the lipids of the bilayer that may determine their activity. Mechanosensitive channels sense tension through their interaction with the lipids of the membrane. We have proposed a mechanism for the bacterial channel of small conductance, MscS, that envisages variable occupancy of pockets in the channel by lipid chains. Here, we analyze protein-lipid interactions for MscS by quenching of tryptophan fluorescence with brominated lipids. By this strategy, we define the limits of the bilayer for TM1, which is the most lipid exposed helix of this protein. In addition, we show that residues deep in the pockets, created by the oligomeric assembly, interact with lipid chains. On the cytoplasmic side, lipids penetrate as far as the pore-lining helices and lipid molecules can align along TM3b perpendicular to lipids in the bilayer. Cardiolipin, free fatty acids, and branched lipids can access the pockets where the latter have a distinct effect on function. Cholesterol is excluded from the pockets. We demonstrate that introduction of hydrophilic residues into TM3b severely impairs channel function and that even "conservative" hydrophobic substitutions can modulate the stability of the open pore. The data provide important insights into the interactions between phospholipids and MscS and are discussed in the light of recent developments in the study of Piezo1 and TrpV4.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Fenómenos Bioquímicos , Transporte Biológico , Cardiolipinas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/genética , Modelos Moleculares , Fosfolípidos/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Triptófano/metabolismo
15.
Ultramicroscopy ; 203: 145-154, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30738626

RESUMEN

Direct electron detectors are an essential asset for the resolution revolution in electron cryo microscopy of biological objects. The direct detectors provide two modes of data acquisition; the counting mode in which single electrons are counted, and the integrating mode in which the signal that arises from the incident electrons is integrated. While counting mode leads to far higher detective quantum efficiency at all spatial frequencies, the integrating mode enables faster data acquisition at higher exposure rates. For optimal throughput at best possible resolution it is important to understand when the better performance in counting mode becomes essential for solving a structure and when the lower detective quantum efficiency in integrating mode can be compensated by increasing the number of particles in the data set. Here, we provide a case study of the Falcon III camera, which has counting mode capability at exposure rates of <0.9 e-/Px² and integrating mode capability at exposure rates above 10 e-/Px². We found that counting mode gives better resolution for medium sized complexes such as the ß-galactosidase (465 kDa) (2.2 Å, 97% of Nyquist vs. 2.4 Å, 89% of Nyquist) with data sets of similar size. However, for larger particles such as Hepatitis B virus capsid like particles (4.8 MDa) we did not find any resolution gain in counting mode.


Asunto(s)
Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Electrones , Fotones
16.
J Phys Chem Lett ; 9(14): 3910-3914, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29939747

RESUMEN

In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have become popular methods to characterize the structure of membrane proteins, solubilized by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually require deuterium-labeled proteins or detergents, which in turn often lead to problems in their expression or purification. Here, we report an approach whose novelty is the combined analysis of SAXS and SANS data from an unlabeled membrane protein complex in solution in two complementary ways. First, an explicit atomic analysis, including both protein and detergent molecules, using the program WAXSiS, which has been adapted to predict SANS data. Second, the use of MONSA which allows one to discriminate between detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable to any detergent-solubilized protein and provides more detailed structural information on protein-detergent complexes from unlabeled samples than SAXS or SANS alone.


Asunto(s)
Técnicas de Química Analítica/métodos , Detergentes/química , Proteínas de la Membrana/química , Difracción de Neutrones , Difracción de Rayos X , Simulación de Dinámica Molecular , Solubilidad
17.
Nat Commun ; 9(1): 2347, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29904064

RESUMEN

The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.


Asunto(s)
Peces/parasitología , Microdominios de Membrana/química , Transporte de Proteínas , Saprolegnia/fisiología , Secuencias de Aminoácidos , Animales , Clonación Molecular , Citosol/metabolismo , Interacciones Huésped-Patógeno , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Biológicos , Plantas/metabolismo , Dominios Proteicos , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/química
18.
PLoS Pathog ; 14(5): e1006978, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29775474

RESUMEN

Fungal cells change shape in response to environmental stimuli, and these morphogenic transitions drive pathogenesis and niche adaptation. For example, dimorphic fungi switch between yeast and hyphae in response to changing temperature. The basidiomycete Cryptococcus neoformans undergoes an unusual morphogenetic transition in the host lung from haploid yeast to large, highly polyploid cells termed Titan cells. Titan cells influence fungal interaction with host cells, including through increased drug resistance, altered cell size, and altered Pathogen Associated Molecular Pattern exposure. Despite the important role these cells play in pathogenesis, understanding the environmental stimuli that drive the morphological transition, and the molecular mechanisms underlying their unique biology, has been hampered by the lack of a reproducible in vitro induction system. Here we demonstrate reproducible in vitro Titan cell induction in response to environmental stimuli consistent with the host lung. In vitro Titan cells exhibit all the properties of in vivo generated Titan cells, the current gold standard, including altered capsule, cell wall, size, high mother cell ploidy, and aneuploid progeny. We identify the bacterial peptidoglycan subunit Muramyl Dipeptide as a serum compound associated with shift in cell size and ploidy, and demonstrate the capacity of bronchial lavage fluid and bacterial co-culture to induce Titanisation. Additionally, we demonstrate the capacity of our assay to identify established (cAMP/PKA) and previously undescribed (USV101) regulators of Titanisation in vitro. Finally, we investigate the Titanisation capacity of clinical isolates and their impact on disease outcome. Together, these findings provide new insight into the environmental stimuli and molecular mechanisms underlying the yeast-to-Titan transition and establish an essential in vitro model for the future characterization of this important morphotype.


Asunto(s)
Cryptococcus neoformans/citología , Cryptococcus neoformans/patogenicidad , Animales , Criptococosis/microbiología , Cryptococcus neoformans/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Hifa/citología , Hifa/crecimiento & desarrollo , Hifa/patogenicidad , Pulmón/microbiología , Enfermedades Pulmonares Fúngicas/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Modelos Biológicos , Morfogénesis , Poliploidía , Factores de Transcripción/metabolismo , Virulencia
19.
Subcell Biochem ; 87: 83-116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29464558

RESUMEN

Mechanosensitive (MS) channels protect bacteria against hypo-osmotic shock and fulfil additional functions. Hypo-osmotic shock leads to high turgor pressure that can cause cell rupture and death. MS channels open under these conditions and release unspecifically solutes and consequently the turgor pressure. They can recognise the raised pressure via the increased tension in the cell membrane. Currently, a better understanding how MS channels can sense tension on molecular level is developing because the interaction of the lipid bilayer with the channel is being investigated in detail. The MS channel of large conductance (MscL) and of small conductance (MscS) have been distinguished and studied in molecular detail. In addition, larger channels were found that contain a homologous region corresponding to MscS so that MscS represents a family of channels. Often several members of this family are present in a species. The importance of this family is underlined by the fact that members can be found not only in bacteria but also in higher organisms. While MscL and MscS have been studied for years in particular by electrophysiology, mutagenesis, molecular dynamics, X-ray crystallography and other biophysical techniques, only recently more details are emerging about other members of the MscS-family.


Asunto(s)
Proteínas Bacterianas , Membrana Dobles de Lípidos , Mecanotransducción Celular/fisiología , Proteínas de la Membrana , Simulación de Dinámica Molecular , Presión Osmótica/fisiología , Bacterias , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo
20.
Biochemistry ; 56(32): 4219-4234, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28656748

RESUMEN

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.


Asunto(s)
Adenosina Monofosfato/química , Antiportadores de Potasio-Hidrógeno/química , Pliegue de Proteína , Multimerización de Proteína , Shewanella/química , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Shewanella/genética , Shewanella/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...