Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Nat Prod Res ; : 1-9, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38657005

Phytochemical investigation of the leaves of Knema intermedia has led to the isolation of a new furofuran lignan, intermedianin 1 together with five known lignans, α-cubebin 2, ß-cubebin 3, bicubebin A 4, bicubebin B 5, and bicubebin C 6. The characterisation and structural elucidation of the isolated compounds were established by extensive spectroscopic data analysis and comparison with literature data. The antifungal activity was tested using the broth microdilution assay, whereas the microbial biofilms were determined using a semi-quantitative static biofilm. Compound 1 exhibited activity against C. albicans, C. lusitanae, and C. auris, (each with MIC/MFC value 250 µg/mL) and increased the biofilm of C. auris (64.07 ± 3.83%) and Candida lusitanae (62.90 ± 3.41%) when treated with 500 µg/mL.

2.
Nat Prod Res ; 38(1): 10-15, 2024.
Article En | MEDLINE | ID: mdl-35862620

Phytochemical investigation of methanolic extract of L. rubiginosa using modern chromatographic techniques has led to the isolation of three new triterpenoid saponins, lepiginosides A-C (1-3), a new farnesyl glycoside, lepiginoside D (4), together with lepisantheside B (5) and gleditsoside C (6). The characterization and structural elucidation of the isolated compounds were established by extensive spectroscopic data analysis and comparison with literature data. Moreover, the antibacterial activity against seven bacteria, but none is active.


Cardiac Glycosides , Sapindaceae , Saponins , Triterpenes , Glycosides/pharmacology , Saponins/chemistry , Sapindaceae/chemistry , Triterpenes/chemistry , Molecular Structure
3.
Nat Prod Res ; : 1-8, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38009213

Phytochemical investigation on the bark of E. kingiana plant afforded ten compounds, including six polyketides namely kingianin A 1, kingianin B 2, kingianin E 3, kingianin F 4, kingianin K 5 and kingianin L 6, three endiandric acids; kingianic acid A 7, tsangibeilin B 8 and endiandric acid M 9, and one sesquiterpene; daibuoxide 10. All compounds were separated as racemic mixture by recycling high-performance liquid chromatography (RHPLC), except for daibuoxide. Their structures were elucidated by detailed spectroscopic and comparative literature data analysis. This is the first report on the presence of the sesquiterpene; daibuoxide in Endiandra genus. In vitro enzymatic bio-evaluation of the isolated compounds against α-amylase and α-glucosidase showed that 4 demonstrated the best α-amylase and α-glucosidase inhibitory activity with IC50 values of 181.54 ± 6.27 µg/mL and 237.87 ± 0.07 µg/mL, respectively. In addition, molecular docking analysis confirmed the α-amylase and α-glucosidase inhibitory activities demonstrated by 4.

4.
Molecules ; 28(7)2023 Mar 30.
Article En | MEDLINE | ID: mdl-37049873

Eleusine indica (L.) Gaertn is a perennial herb belonging to the Poaceae family. As the only species of Eleusine found abundantly in Malaysia, it is locally known as "rumput sambau" and has been traditionally used to treat various ailments including pain relief from vaginal bleeding, hastening the placenta delivery after childbirth, asthma, hemorrhoids, urinary infection, fever, and as a tonic for flu-related symptoms. A diverse array of biological activities have been reported for the plant, such as antimicrobial, cytotoxic, anticonvulsant, anti-inflammatory, analgesic, antipyretic, and hepatoprotective action. Despite many reports on its traditional uses and biological activities, limited chemical databases are available for the plant. Thus, the aims of this study were to annotate and identify the phytochemical constituents in the methanolic extract of E. indica through tandem LCMS-based analysis techniques using MZmine, GNPS, Compound Discoverer, and SIRIUS platforms. This technique managed to identify a total of 65 phytochemicals in the extract, comprising primary and secondary metabolites, and was verified by the isolation of one of the identified phytochemicals. The structural elucidation mainly using 1D and 2D NMR as well as comparison with values in the literature confirms the isolated phytochemical to be a 3-OH anomer of loliolide, a benzofuran-type of compound, which consequently increases the level of confidence in the applied technique. The research describes a useful method for the fast and simultaneous identification of phytochemicals in E. indica, contributing to the study of the chemical properties of the genus and family.


Eleusine , Plant Extracts/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Phytochemicals/chemistry
5.
J Tradit Complement Med ; 12(6): 556-566, 2022 Nov.
Article En | MEDLINE | ID: mdl-36325238

Background and aim: The present study investigates Plectranthus scutellarioides (L.) R.Br. as potential antibacterial oral rinse against bacteria associated with peri-implantitis to prevent the initial infection as well as disease progression. Experimental procedure: Phytochemical screening was done on P. scutellarioides lyophilized extract to identify the presence of chemical constituent by using mass-based identification. The extract was screened for its antibacterial activity against 4 Gram-positive aerobes (early colonizer) and 5 Gram-negative facultative anaerobes as well as obligate anaerobes (late colonizer) using disc diffusion method. The extract was tested for minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), its cytotoxicity effects on human gingival fibroblast cell (HnGF) as well as bacteria morphological changes by scanning electron microscopy (SEM). Results and conclusion: Four flavonoid compounds were identified namely quercetin-3-glucoside, quercitrin, quercetin 3-(6″-acetylglucoside) and quercetin 3-O-acetyl-rhamnoside. The sensitivity test revealed that P. scutellarioides extract was effective against all the bacteria tested. MIC concentrations for the Gram-positive aerobes were in the range of 1.56-12.50 mg/mL, and the MBC concentrations were within 3.13-12.50 mg/mL. For Gram-negative obligate anaerobes, the MIC concentration were within 3.13-12.50 mg/mL and MBC within 6.25-200.00 mg/mL. The ethanolic extract did not have any cytotoxic effect on HnGF cells at the tested concentrations. SEM images showed bacterial cell wall disruption for all the bacteria tested. The results showed that P. scutellarioides extract exerts its antibacterial property by disrupting the cell wall of all the bacteria tested. Hence, P. scutellarioides may benefit from further investigations on its safety for oral use as an adjunctive treatment for peri-implantitis.

6.
J Ethnopharmacol ; 254: 112657, 2020 May 23.
Article En | MEDLINE | ID: mdl-32045683

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria, a devastating infectious disease which was initially recognized as episodic fever, is caused by parasitic protozoan of the genus Plasmodium. Medicinal plants with ethnobotanical information to treat fever and/or malaria has been the key element in identifying potential plant candidates for antimalarial screening. Goniothalamus lanceolatus Miq. (Annonaceae) is used as a folk remedy, particularly to treat fever and skin diseases. AIM OF THE STUDY: In this context, supported with previous preliminary data of its antiplasmodial activity, this study was undertaken to determine the in vitro antiplasmodial and cytotoxicity activities of G. lanceolatus crude extracts and its major compounds. MATERIALS AND METHODS: The in vitro antiplasmodial activity was determined by parasite lactate dehydrogenase (pLDH) assay on chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The cytotoxicity activity was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on hepatocellular carcinoma (HepG2) and normal liver (WRL-68) cell lines. RESULTS: The root methanol extract possessed potent antiplasmodial activity against both P. falciparum 3D7 and K1 strains (IC50 = 2.7 µg/ml, SI = 140; IC50 = 1.7 µg/ml, SI = 236). Apart from the DCM extract of stem bark and root that were found to be inactive (IC50 > 50 µg/ml) against 3D7 strain, all other tested crude extracts exhibited promising (5< IC50 < 15 µg/ml) to moderate (15< IC50 < 50 µg/ml) antiplasmodial activity against both strain. Additionally, only compound C (Parvistone D) exerted promising antiplasmodial activity against 3D7 strain (IC50 = 7.5 µM, SI = 51) whereas compound A, B and D showed moderate antiplasmodial activity against the same strain (20 < IC50 < 100 µM). Interestingly, when tested on K1 strain, compound A, C and D exhibited promising antiplasmodial activity (2 < IC50 < 20 µM) while compound B exhibited moderate activity (IC50 = 26.9 µM). Cytotoxicity study showed that all tested crude extracts and compounds were non-toxic on WRL-68 and HepG2 cell lines (CC50 > 30 µg/ml, CC50 > 10 µM, respectively), except for the hexane and DCM extracts of root, which exerted mild cytotoxicity on HepG2 cell line (IC50 < 30 µg/ml). CONCLUSIONS: This study suggests that the root methanol extract and compound C (Parvistone D) obtained from G. lanceolatus are highly potential for exploitation as source of antimalarial agents. Parvistone D is identified as one of the bioactive styryl lactones found in the plant extract. It is also noteworthy, that the extract and compound were more active against chloroquine-resistant (K1) strain of P. falciparum. Further studies are being carried out to assess their toxicity profile and antimalarial efficacy in animal model.


Cell Survival/drug effects , Goniothalamus/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Cell Line, Tumor , Cumulus Cells , Dose-Response Relationship, Drug , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry
7.
BMC Complement Altern Med ; 18(1): 31, 2018 Jan 27.
Article En | MEDLINE | ID: mdl-29374471

BACKGROUND: Morinda citrifolia L. that was reported with immunomodulating and cytotoxic effects has been traditionally used to treat multiple illnesses including cancer. An anthraquinone derived from fruits of Morinda citrifolia L., nordamnacanthal, is a promising agent possessing several in vitro biological activities. However, the in vivo anti-tumor effects and the safety profile of nordamnacanthal are yet to be evaluated. METHODS: In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice. RESULTS: Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays. CONCLUSION: Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.


Aldehydes/pharmacology , Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Immunologic Factors/pharmacology , Morinda/chemistry , Plant Extracts/pharmacology , Aldehydes/chemistry , Aldehydes/toxicity , Animals , Anthraquinones/chemistry , Anthraquinones/toxicity , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Immunologic Factors/chemistry , Immunologic Factors/toxicity , MCF-7 Cells , Male , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Plant Extracts/toxicity , Toxicity Tests, Subchronic
...