Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39007980

RESUMEN

Biochars derived from apple pomace (AP-BC) and industrial wastewater sludge (IS-BC) were used to investigate adsorption performance and mechanism for removing carbendazim from water and compare its performance with commercial biochar (commercial BC). The results showed that the adsorption capacity of AP-BC and IS-BC were 76 mg g-1 and 82 mg g-1 respectively that was comparable with the commercial BC (80 mg g-1). The adsorption kinetics and isotherms were best described by the Pseudo-second-order and Langmuir models. Thermodynamic analysis suggested that higher temperatures can enhance the mobility of molecules, increased mobility facilitates more frequent and stronger interactions between the adsorbate molecules and the surface of the adsorbent material, leading to greater adsorption capacity. Density functional theory (DFT) calculations confirmed carbendazim's weak electrophilic nature, supporting the primary physisorption mechanism. Even after five cycles of recycling, both biochars maintained a consistent carbendazim removal efficiency of around 82%, highlighting their high reusability. In this study, the examination of waste-derived biochar's economic feasibility revealed that using biochars derived from waste biomass for large-scale wastewater treatment applications is an economically viable choice.

2.
Environ Monit Assess ; 196(5): 450, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613635

RESUMEN

Unscientific dumping of municipal solid waste (MSW) is a common practice in Kashmir. To have an environmentally friendly and sustainable waste management system, MSW was collected from nine study locations of this region. They were air-dried, then oven-dried at 105 °C for 24 h, segregated, and characterized for various components. The overall average organic waste was > 55%, plastic waste about 17%, inert material about 10%, paper 9%, and cloth waste 7%. The calorific value of paper and plastic wastes exhibited was 4910 kcal/kg, while organic waste had a calorific value of 1980 kcal/kg. The proximate analysis showed that the moisture content ranged from 16 to 29%, volatile matter ranged from 49 to 72%, ash content ranged from 0.03 to 5%, and fixed carbon ranged from 5 to 20%. In S7, the volatile matter content recorded the lowest value at 49.15%, while in S5, the volatile matter content was notably higher at 71.84%, indicating easier ignition. Further, elemental analysis revealed that the major elements in MSW were carbon and oxygen, 53% and 37%, respectively, with small traces of heavy metals with an average of 0.02% cadmium (Cd) and 0.006% lead (Pb). Moreover, field emission scanning electron microscopy (FESEM) micrographs provided confirmation that the majority of components in the MSW exhibited either partial or complete degradation, resulting in a rough surface texture. In addition, the presence of silica and other silicate groups was also detected. Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the main functional groups were alcohol. In the X-ray diffraction (XRD) analysis, all the major mineral phases were detected between 20 and 30° 2θ, except for the peaks at 50-60° 2θ in S3 and S9 where catalysts such as zeolite Y and zeolite X were detected. Overall, the MSW had low moisture content but higher calorific value, making it a viable feedstock.


Asunto(s)
Residuos Sólidos , Zeolitas , Espectroscopía Infrarroja por Transformada de Fourier , Monitoreo del Ambiente , India , Carbono , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA