Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37014702

RESUMEN

The prevalence of obesity and type 2 diabetes is growing at an alarming rate, including among pregnant women. Low-calorie sweeteners (LCSs) have increasingly been used as an alternative to sugar to deliver a sweet taste without the excessive caloric load. However, there is little evidence regarding their biological effects, particularly during development. Here, we used a mouse model of maternal LCS consumption to explore the impact of perinatal LCS exposure on the development of neural systems involved in metabolic regulation. We report that adult male, but not female, offspring from both aspartame- and rebaudioside A-exposed dams displayed increased adiposity and developed glucose intolerance. Moreover, maternal LCS consumption reorganized hypothalamic melanocortin circuits and disrupted parasympathetic innervation of pancreatic islets in male offspring. We then identified phenylacetylglycine (PAG) as a unique metabolite that was upregulated in the milk of LCS-fed dams and the serum of their pups. Furthermore, maternal PAG treatment recapitulated some of the key metabolic and neurodevelopmental abnormalities associated with maternal LCS consumption. Together, our data indicate that maternal LCS consumption has enduring consequences on the offspring's metabolism and neural development and that these effects are likely to be mediated through the gut microbial co-metabolite PAG.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Ratones , Masculino , Femenino , Humanos , Embarazo , Edulcorantes , Ingestión de Energía , Obesidad/metabolismo
2.
Cells ; 11(16)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010611

RESUMEN

The reward system involved in hedonic food intake presents neuronal and behavioral dysregulations during obesity. Moreover, gut microbiota dysbiosis during obesity promotes low-grade inflammation in peripheral organs and in the brain contributing to metabolic alterations. The mechanisms underlying reward dysregulations during obesity remain unclear. We investigated if inflammation affects the striatum during obesity using a cohort of control-fed or diet-induced obese (DIO) male mice. We tested the potential effects of specific gut bacteria on the reward system during obesity by administrating Akkermansia muciniphila daily or a placebo to DIO male mice. We showed that dysregulations of the food reward are associated with inflammation and alterations in the blood-brain barrier in the striatum of obese mice. We identified Akkermansia muciniphila as a novel actor able to improve the dysregulated reward behaviors associated with obesity, potentially through a decreased activation of inflammatory pathways and lipid-sensing ability in the striatum. These results open a new field of research and suggest that gut microbes can be considered as an innovative therapeutic approach to attenuate reward alterations in obesity. This study provides substance for further investigations of Akkermansia muciniphila-mediated behavioral improvements in other inflammatory neuropsychiatric disorders.


Asunto(s)
Obesidad , Verrucomicrobia , Akkermansia , Animales , Inflamación/metabolismo , Masculino , Ratones , Ratones Obesos , Obesidad/metabolismo , Recompensa , Verrucomicrobia/metabolismo
3.
Gut Microbes ; 13(1): 1959242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34424831

RESUMEN

Hypothalamic regulations of food intake are altered during obesity. The dopaminergic mesocorticolimbic system, responsible for the hedonic response to food intake, is also affected. Gut microbes are other key players involved in obesity. Therefore, we investigated whether the gut microbiota plays a causal role in hedonic food intake alterations contributing to obesity. We transferred fecal material from lean or diet-induced obese mice into recipient mice and evaluated the hedonic food intake using a food preference test comparing the intake of control and palatable diets (HFHS, High-Fat High-Sucrose) in donor and recipient mice. Obese mice ate 58% less HFHS during the food preference test (p < 0.0001) than the lean donors, suggesting a dysregulation of the hedonic food intake during obesity. Strikingly, the reduction of the pleasure induced by eating during obesity was transferable through gut microbiota transplantation since obese gut microbiota recipient mice exhibited similar reduction in HFHS intake during the food preference test (40% reduction as compared to lean gut microbiota recipient mice, p < 0.01). This effect was associated with a consistent trend in modifications of dopaminergic markers expression in the striatum. We also pinpointed a highly positive correlation between HFHS intake and Parabacteroides (p < 0.0001), which could represent a potential actor involved in hedonic feeding probably through the gut-to-brain axis. We further demonstrated the key roles played by gut microbes in this paradigm since depletion of gut microbiota using broad-spectrum antibiotics also altered HFHS intake during food preference test in lean mice. In conclusion, we discovered that gut microbes regulate hedonic aspects of food intake. Our data demonstrate that gut microbiota modifications associated with obesity participate in dysregulations of the reward and hedonic components of the food intake. These data provide evidence that gut microbes could be an interesting therapeutic target to tackle hedonic disorders related to obesity.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Conducta Alimentaria/fisiología , Preferencias Alimentarias/fisiología , Microbioma Gastrointestinal/fisiología , Obesidad/microbiología , Animales , Bacteroidetes/clasificación , Bacteroidetes/aislamiento & purificación , Cuerpo Estriado/metabolismo , Dieta Alta en Grasa , Trasplante de Microbiota Fecal , Hiperfagia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Recompensa
4.
J Cachexia Sarcopenia Muscle ; 12(1): 70-90, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33350058

RESUMEN

BACKGROUND: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS: We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS: In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 µM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS: We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia.


Asunto(s)
Caquexia , Colestasis , Inflamación , Neoplasias , Animales , Caquexia/etiología , Colestasis/etiología , Citocinas , Humanos , Inflamación/complicaciones , Ratones , Neoplasias/complicaciones
5.
Nutrients ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987923

RESUMEN

Obesity and obesity-related disorders, such as type 2 diabetes have been progressively increasing worldwide and treatments have failed to counteract their progression. Growing evidence have demonstrated that gut microbiota is associated with the incidence of these pathologies. Hence, the identification of new nutritional compounds, able to improve health through a modulation of gut microbiota, is gaining interest. In this context, the aim of this study was to investigate the gut-driving effects of rhubarb extract in a context of diet-induced obesity and diabetes. Eight weeks old C57BL6/J male mice were fed a control diet (CTRL), a high fat and high sucrose diet (HFHS) or a HFHS diet supplemented with 0.3% (g/g) of rhubarb extract for eight weeks. Rhubarb supplementation fully prevented HFHS-induced obesity, diabetes, visceral adiposity, adipose tissue inflammation and liver triglyceride accumulation, without any modification in food intake. By combining sequencing and qPCR methods, we found that all these effects were associated with a blooming of Akkermansia muciniphila, which is strongly correlated with increased expression of Reg3γ in the colon. Our data showed that rhubarb supplementation is sufficient to protect against metabolic disorders induced by a diet rich in lipid and carbohydrates in association with a reciprocal interaction between Akkermansia muciniphila and Reg3γ.


Asunto(s)
Akkermansia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Obesidad/tratamiento farmacológico , Rheum/química , Tejido Adiposo/metabolismo , Akkermansia/aislamiento & purificación , Animales , Biomarcadores/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Inflamación/tratamiento farmacológico , Inflamación/etiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Raíces de Plantas/química , Análisis de Secuencia de ADN , Triglicéridos/metabolismo
6.
Am J Physiol Endocrinol Metab ; 319(3): E647-E657, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776827

RESUMEN

Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking Napepld in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (NapepldΔIEC). After an overnight fast, we exposed wild-type (WT) and NapepldΔIEC mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. NapepldΔIEC mice displayed lower hypothalamic levels of N-oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic Pomc occurred in the hypothalamus of NapepldΔIEC mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in NapepldΔIEC mice. Following lipid administration, WT and NapepldΔIEC mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of NapepldΔIEC mice upon HFD. We conclude that in response to lipid, NapepldΔIEC mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.


Asunto(s)
Encéfalo/fisiología , Fenómenos Fisiológicos del Sistema Digestivo , Ingestión de Alimentos/fisiología , Fosfolipasa D/fisiología , Animales , Dieta Alta en Grasa , Dipeptidil Peptidasa 4/metabolismo , Endocannabinoides/metabolismo , Glándulas Endocrinas/metabolismo , Etanolaminas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Hiperfagia/genética , Hiperfagia/fisiopatología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/fisiología , Ácidos Oléicos/metabolismo , Fosfolipasa D/genética , Nervio Vago/metabolismo
7.
Cells ; 9(5)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443626

RESUMEN

Diverse metabolic disorders have been associated with an alteration of N-acylethanolamine (NAE) levels. These bioactive lipids are synthesized mainly by N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and influence host metabolism. We have previously discovered that NAPE-PLD in the intestine and adipose tissue is connected to the pathophysiology of obesity. However, the physiological function of NAPE-PLD in the liver remains to be deciphered. To study the role of liver NAPE-PLD on metabolism, we generated a new mouse model of inducible Napepld hepatocyte-specific deletion (Napepld∆Hep mice). In this study, we report that Napepld∆Hep mice develop a high-fat diet-like phenotype, characterized by an increased fat mass gain, hepatic steatosis and we show that Napepld∆Hep mice are more sensitive to liver inflammation. We also demonstrate that the role of liver NAPE-PLD goes beyond the mere synthesis of NAEs, since the deletion of NAPE-PLD is associated with a marked modification of various bioactive lipids involved in host homeostasis such as oxysterols and bile acids. Collectively these data suggest that NAPE-PLD in hepatocytes is a key regulator of liver bioactive lipid synthesis and a dysregulation of this enzyme leads to metabolic complications. Therefore, deepening our understanding of the regulation of NAPE-PLD could be crucial to tackle obesity and related comorbidities.


Asunto(s)
Metabolismo de los Lípidos , Hígado/enzimología , Hígado/metabolismo , Fosfolipasa D/metabolismo , Animales , Dieta Alta en Grasa , Eliminación de Gen , Hepatocitos/enzimología , Inflamación/enzimología , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Obesos , Especificidad de Órganos , Fenotipo , Fosfolipasa D/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Endocr Rev ; 40(5): 1271-1284, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31081896

RESUMEN

The gut microbiome is considered an organ contributing to the regulation of host metabolism. Since the relationship between the gut microbiome and specific diseases was elucidated, numerous studies have deciphered molecular mechanisms explaining how gut bacteria interact with host cells and eventually shape metabolism. Both metagenomic and metabolomic analyses have contributed to the discovery of bacterial-derived metabolites acting on host cells. In this review, we examine the molecular mechanisms by which bacterial metabolites act as paracrine or endocrine factors, thereby regulating host metabolism. We highlight the impact of specific short-chain fatty acids on the secretion of gut peptides (i.e., glucagon-like peptide-1, peptide YY) and other metabolites produced from different amino acids and regulating inflammation, glucose metabolism, or energy homeostasis. We also discuss the role of gut microbes on the regulation of bioactive lipids that belong to the endocannabinoid system and specific neurotransmitters (e.g., γ-aminobutyric acid, serotonin, nitric oxide). Finally, we review the role of specific bacterial components (i.e., ClpB, Amuc_1100) also acting as endocrine factors and eventually controlling host metabolism. In conclusion, this review summarizes the recent state of the art, aiming at providing evidence that the gut microbiome influences host endocrine functions via several bacteria-derived metabolites.


Asunto(s)
Sistema Endocrino , Microbioma Gastrointestinal , Animales , Metabolismo Energético , Homeostasis , Humanos , Inflamación
9.
Nat Commun ; 10(1): 457, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692526

RESUMEN

Variations in N-acylethanolamines (NAE) levels are associated with obesity and metabolic comorbidities. Their role in the gut remains unclear. Therefore, we generated a mouse model of inducible intestinal epithelial cell (IEC)-specific deletion of N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD), a key enzyme involved in NAE biosynthesis (Napepld∆IEC). We discovered that Napepld∆IEC mice are hyperphagic upon first high-fat diet (HFD) exposure, and develop exacerbated obesity and steatosis. These mice display hypothalamic Pomc neurons dysfunctions and alterations in intestinal and plasma NAE and 2-acylglycerols. After long-term HFD, Napepld∆IEC mice present reduced energy expenditure. The increased steatosis is associated with higher gut and liver lipid absorption. Napepld∆IEC mice display altered gut microbiota. Akkermansia muciniphila administration partly counteracts the IEC NAPE-PLD deletion effects. In conclusion, intestinal NAPE-PLD is a key sensor in nutritional adaptation to fat intake, gut-to-brain axis and energy homeostasis and thereby constitutes a novel target to tackle obesity and related disorders.


Asunto(s)
Grasas de la Dieta/metabolismo , Hígado Graso/metabolismo , Mucosa Intestinal/metabolismo , Obesidad/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipasa D/metabolismo , Adaptación Fisiológica , Animales , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Microbioma Gastrointestinal/fisiología , Homeostasis , Mucosa Intestinal/microbiología , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Obesidad/etiología
10.
Nat Metab ; 1(1): 34-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-32694818

RESUMEN

The gut microbiome has emerged as a key regulator of host metabolism. Here we review the various mechanisms through which the gut microbiome influences the energy metabolism of its host, highlighting the complex interactions between gut microbes, their metabolites and host cells. Among the most important bacterial metabolites are short-chain fatty acids, which serve as a direct energy source for host cells, stimulate the production of gut hormones and act in the brain to regulate food intake. Other microbial metabolites affect systemic energy expenditure by influencing thermogenesis and adipose tissue browning. Both direct and indirect mechanisms of action are known for specific metabolites, such as bile acids, branched chain amino acids, indole propionic acid and endocannabinoids. We also discuss the roles of specific bacteria in the production of specific metabolites and explore how external factors, such as antibiotics and exercise, affect the microbiome and thereby energy homeostasis. Collectively, we present a large body of evidence supporting the concept that gut microbiota-based therapies can be used to modulate host metabolism, and we expect to see such approaches moving from bench to bedside in the near future.


Asunto(s)
Metabolismo Energético , Homeostasis , Microbiota , Animales , Biodiversidad , Biomarcadores , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Humanos , Especificidad de Órganos
11.
Obesity (Silver Spring) ; 26(5): 792-800, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29687645

RESUMEN

The past decade has been characterized by tremendous progress in the field of the gut microbiota and its impact on host metabolism. Although numerous studies show a strong relationship between the composition of gut microbiota and specific metabolic disorders associated with obesity, the key mechanisms are still being studied. The present review focuses on specific complex pathways as well as key interactions. For instance, the nervous routes are explored by examining the enteric nervous system, the vagus nerve, and the brain, as well as the endocrine routes (i.e., glucagon-like peptide-1, peptide YY, endocannabinoids) by which gut microbes communicate with the host. Moreover, the key metabolites involved in such specific interactions (e.g., short chain fatty acids, bile acids, neurotransmitters) as well as their targets (i.e., receptors, cell types, and organs) are briefly discussed. Finally, the review highlights the role of metabolic endotoxemia in the onset of metabolic disorders and the implications for alterations in gut microbiota-host interactions and ultimately the onset of diseases.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Enfermedades Metabólicas/genética , Obesidad/genética , Humanos , Obesidad/metabolismo
12.
Chem Phys Lipids ; 207(Pt B): 127-134, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28606714

RESUMEN

Multiple sclerosis (MS) is a central nervous demyelinating disease characterized by cyclic loss and repair of myelin sheaths associated with chronic inflammation and neuronal loss. This degenerative pathology is accompanied by modified levels of oxysterols (oxidative derivatives of cholesterol, implicated in cholesterol metabolism), highlighted in the brain, blood and cerebrospinal fluid of MS patients. The pathological accumulation of such derivatives is thought to participate in the onset and progression of the disease through their implication in inflammation, oxidative stress, demyelination and neurodegeneration. In this context, physical exercise is envisaged as a complementary resource to ameliorate therapeutic strategies. Indeed, physical activity exerts beneficial effects on neuronal plasticity, decreases inflammation and oxidative stress and improves blood-brain integrity in extents that could be beneficial for brain health. The present review attempts to summarize the available data on the positive effect of physical exercise to highlight possible links between physical activity and modulation of cholesterol/oxysterol homeostasis in MS.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Terapia por Ejercicio , Metabolismo de los Lípidos , Esclerosis Múltiple/metabolismo , Animales , Encéfalo/patología , Ratones , Esclerosis Múltiple/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA