Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 16(25): 2269-2289, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34569268

RESUMEN

Aim: Fungal biofilms interfere with the wound healing processes. Henceforth, the study aims to fabricate a biomaterial-based nano-scaffold with the dual functionalities of wound healing and antibiofilm activity. Methods: Nanofibers comprising acacia gum, polyvinyl alcohol and inclusion complex of eugenol in ß-cyclodextrin (EG-NF) were synthesized using electrospinning. Antibiofilm studies were performed on Candida species, and the wound-healing activity was evaluated through an in vivo excision wound rat model. Results: The EG-NF potentially eradicated the mature biofilm of Candida species and their clinical isolates. Further, EG-NF also enhanced the re-epithelization and speed of wound healing in in vivo rat experiments. Conclusion: The study established the bifunctional applications of eugenol nanofibers as a transdermal substitute with antifungal potency.


Asunto(s)
Nanofibras , Animales , Antifúngicos/farmacología , Eugenol , Goma Arábiga , Alcohol Polivinílico , Ratas
2.
Curr Pharmacol Rep ; 7(1): 1-14, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33552875

RESUMEN

Purpose of Review: The coronavirus disease-2019 (COVID-19) is a global pandemic which has not been seen in recent history, leaving behind deep socioeconomic damages and huge human losses with the disturbance in the healthcare sector. Despite the tremendous international effort and the launch of various clinical trials for the containment of this pandemic, no effective therapy has been proven yet. Recent Findings: This review has highlighted the different traditional therapeutic techniques, along with the potential contribution of nanomedicine against the severe acute respiratory syndrome corovirus-2 (SARS-CoV-2). Repositioning of the drugs, such as remdesivir and chloroquine, is a rapid process for the reach of safe therapeutics, and the related clinical trials have determined effects against COVID-19. Various protein-based SARS-CoV-2 vaccine candidates have successfully entered clinical phases, determining positive results. The self-assembled and metallic nanovaccines mostly based on the antigenic properties of spike (S) protein are also approachable, feasible, and promising techniques for lowering the viral burden. Summary: There are number of NP-based diagnostic systems have been reported for coronaviruses (CoVs) and specifically for SARS-CoV-2. However, extensive studies are still necessary and required for the nanoparticle (NP)-based therapy.

3.
AAPS PharmSciTech ; 22(3): 76, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33595780

RESUMEN

Collagen and chitosan have haemostatic, tissue fix and wound healing properties but the poor mechanical property limits their application. Therefore, various concentrations of collagen (1-6%) and chitosan (1-2%) were used to develop biopolymer-coated gauzes, with and without glycerol as plasticiser. Glycerol-treated gauzes showed desired mechanical and adhesive property in comparison to polymer-coated gauzes alone. Developed gauzes were characterized using differential scanning calorimetry, thermal gravimetric analysis and Fourier transform infrared spectrophotometry to confirm the biopolymer coating and stability. Scanning electron microscopy showed multilayer coating of the biopolymer and faster clotting in chitosan gauzes in comparison to collagen. Surface plasmon resonance assay confirmed that chitosan exhibited more binding affinity of 65 RU in comparison to collagen, which showed 55 RU with erythrocytes. Decrease in the value of plateletcrit and mean platelet volume confirmed platelet adhesion and aggregation over the surface of polymer-coated dressings. Gamma scintigraphy studies showed 85 ± 2% formulation retention up to 12 h at the wound site in comparison to 40 ± 3% retention of the radiopharmaceutical alone. Collagen and chitosan-coated gauze showed 226 ± 15 s and 179 ± 12 s haemostasis time, respectively, which was significantly less from 506 ± 15 s in standard gauze. Chitosan gauze showed faster wound healing in comparison to the collagen-coated gauze. Chitosan and collagen-coated gauzes showed 55 ± 4% wound contraction on day seven in comparison to 25 ± 2% in the control group, while chitosan gauzes showed complete wound contraction on day fourteenth, while the collagen-coated gauze showed 90 ± 3% on the same day.


Asunto(s)
Vendajes , Quitosano/farmacología , Colágeno/farmacología , Hemostáticos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Adulto , Animales , Biopolímeros/farmacología , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA