Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Biol Macromol ; 270(Pt 2): 132522, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768922

RESUMEN

The current study goal was to improve mucoadhesive potential and ocular pharmacokinetics of nanoparticles of thiolated xyloglucan (TXGN) containing moxifloxacin (MXF). Thiolation of xyloglucan (XGN) was achieved with esterification with 3-mercaptopropionic acid. TXGN was characterized by NMR and FTIR analysis. The nanoparticles of TXGN were prepared using ionic-gelation method and evaluate the antibacterial properties. TXGN and nanoparticles were determined to possess 0.06 and 0.08 mmol of thiol groups/mg of polymer by Ellman's method. The ex-vivo bioadhesion time of TXGN and nanoparticles was higher than XGN in a comparative assessment of their mucoadhesive properties. The creation of a disulfide link between mucus and TXGN is responsible for the enhanced mucoadhesive properties of TXGN (1-fold) and nanoparticles (2-fold) over XGN. Improved MXF penetration in nanoparticulate formulation (80 %) based on TXGN was demonstrated in an ex-vivo permeation research utilizing rabbit cornea. Dissolution study showed 95 % release of MXF from nanoparticles. SEM images of nanoparticles showed spherical shape and cell viability assay showed nontoxic behavior when tested on RPE cell line. Antibacterial analysis revealed a zone of inhibition of 31.5 ± 0.5 mm for MXF, while NXM3 exhibited an expanded zone of 35.5 ± 0.4 mm (p < 0.001). In conclusion, thiolation of XGN improves its bioadhesion, permeation, ocular-retention and pharmacokinetics of MXF.


Asunto(s)
Glucanos , Moxifloxacino , Nanopartículas , Xilanos , Xilanos/química , Glucanos/química , Moxifloxacino/química , Moxifloxacino/farmacocinética , Moxifloxacino/farmacología , Animales , Conejos , Nanopartículas/química , Portadores de Fármacos/química , Antibacterianos/farmacocinética , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Compuestos de Sulfhidrilo/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Humanos , Sistemas de Liberación de Medicamentos , Permeabilidad , Línea Celular , Administración Oftálmica , Adhesividad , Adhesivos/química
2.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958750

RESUMEN

Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.


Asunto(s)
Suplementos Dietéticos , Nanopartículas , Disponibilidad Biológica , Liposomas , Sistemas de Liberación de Medicamentos , Nanopartículas/química
3.
Heliyon ; 9(9): e19877, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809498

RESUMEN

The present work aimed to develop nanoparticles of tobramycin (TRM) using thiolated chitosan (TCS) in order to improve the mucoadhesion, antibacterial effect and pharmacokinetics. The nanoparticles were evaluated for their compatibility, thermal stability, particle size, zeta potential, mucoadhesion, drug release, kinetics of TRM release, corneal permeation, toxicity and ocular irritation. The thiolation of chitosan was confirmed by 1H NMR and FTIR, which showed peaks at 6.6 ppm and 1230 cm-1, respectively. The nanoparticles had a diameter of 73 nm, a negative zeta potential (-21 mV) and a polydispersity index of 0.15. The optimized formulation, NT8, exhibited the highest values of mucoadhesion (7.8 ± 0.541h), drug loading (87.45 ± 1.309%), entrapment efficiency (92.34 ± 2.671%), TRM release (>90%) and corneal permeation (85.56%). The release pattern of TRM from the developed formulations was fickian diffusion. TRM-loaded nanoparticles showed good antibacterial activity against Pseudomonas aeruginosa. The optimized formulation NT8 (0.1% TRM) greatly increased the AUC(0-∞) (1.5-fold) while significantly reducing the clearance (5-fold) compared to 0.3% TRM. Pharmacokinetic parameters indicated improved ocular retention and bioavailability of TRM loaded nanoparticles. Our study demonstrated that the TRM-loaded nanoparticles had improved mucoadhesion and pharmacokinetics and a suitable candidate for effective treatment of ocular bacterial infections.

4.
Pharmaceutics ; 15(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37765228

RESUMEN

Depression is the major mental illness which causes along with loss of interest in daily life, a feeling of hopelessness, appetite or weight changes, anger and irritability. Due to the hepatic first-pass metabolism, the absolute bioavailability of fluvoxamine (FVM) after oral administration is about 50%. By avoiding the pre-systemic metabolism, nasal delivery would boost bioavailability of FVM. Additionally, the absorption is anticipated to occur more quickly than it would via the oral route because of the existence of microvilli and high vasculature. A nonionic surfactant, cholesterol and an arachidonic acid-carboxymethyl chitosan (AA-CMCS) conjugate were used to develop FVM-loaded novasomes. To investigate the effects of surfactant concentration, AA-CMCS conjugate concentration and stirring speed on the novasomes' characteristics, a Box-Behnken design was used. The dependent variables chosen were zeta potential, polydispersity index and particle size. The AA-CMCS conjugate was confirmed by 1H-NMR and FTIR. Using Design Expert software (version 7; Stat-Ease Inc., Minneapolis, MN, USA), novasomes were further optimized. The chosen optimal formulation (NAC8) was made up of AA-CMCS conjugate, Span 60 and cholesterol. Particle size, zeta potential and PDI values for NAC8 formulation were 101 nm, -35 mV and 0.263, respectively. The NAC8 formulation's DSC and TGA analysis demonstrated that the medication had been uniformly and amorphously distributed throughout the novasomes. The NAC8 formulation showed 99% and 90% FVM release and permeation, respectively, and the novasome adherence time was 24 h. An improved antidepressant effect along with five-fold increase in bioavailability of FVM was observed after trans-nasal administration of NAC8 formulation compared to the reference commercially available Flumin® tablets. FVM-loaded novasomes administered via the nasal route may therefore constitute an advancement in the management of depression.

5.
Gels ; 9(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37754378

RESUMEN

PURPOSE: The goal of this study was to make pH-sensitive HPMC/Neocel C19-based interpenetrating polymeric networks (IPNs) that could be used to treat different diseases. An assembled novel carrier system was demonstrated in this study to achieve multiple functions such as drug protection and self-regulated release. METHODS: Misoprostol (MPT) was incorporated as a model drug in hydroxyl-propyl-methylcellulose (HPMC)- and Neocel C19-based IPNs for controlled release. HPMC- and Neocel C19-based IPNs were fabricated through an aqueous polymerization method by utilizing the polymers HPMC and Neocel C19, the initiator ammonium peroxodisulfate (APS), the crosslinker methylenebisacrylamide (MBA), and the monomer methacrylic acid (MAA). An IPN based on these materials was created using an aqueous polymerization technique. Samples of IPN were analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermal analysis (TGA), and powder X-ray diffraction (PXRD). The effects of the pH levels 1.2 and 7.4 on these polymeric networks were also studied in vitro and through swelling experiments. We also performed in vivo studies on rabbits using commercial tablets and hydrogels. RESULTS: The thermal stability measured using TGA and DSC for the revised formulation was higher than that of the individual components. Crystallinity was low and amorphousness was high in the polymeric networks, as revealed using powder X-ray diffraction (PXRD). The results from the SEM analysis demonstrated that the surface of the polymeric networks is uneven and porous. Better swelling and in vitro results were achieved at a high pH (7.4), which endorses the pH-responsive characteristics of IPN. Drug release was also increased in 7.4 pH (80% in hours). The pharmacokinetic properties of the drugs showed improvement in our work with hydrogel. The tablet MRT was 13.17 h, which was decreased in the hydrogels, and its AUC was increased from 314.41 ng h/mL to 400.50 ng h/mL in hydrogels. The blood compatibility of the IPN hydrogel was measured using different weights (100 mg, 200 mg, 400 mg, and 600 mg; 5.34%, 12.51%, 20.23%, and 29.37%, respectively). CONCLUSIONS: As a result, IPN composed of HPMC and Neocel C19 was successfully synthesized, and it is now possible to use it for the controlled release of MPT.

6.
Gels ; 9(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37504430

RESUMEN

PURPOSE: Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid (MA), ammonium peroxodisulfate (APS), and methylenebisacrylamide (MBA). In the current studies, an effort has been made to look at the possibilities of these materials in developing new hydrogel film wound dressings meant for a slow release of the antibiotic AM and to enhance the potential for wound healing. METHODS: Free-radical polymerization was used to generate the hydrogel film, and different concentrations of the CS polymer were used. Measurements were taken of the film thickness, weight fluctuation, folding resistance, moisture content, and moisture uptake. HPLC, FTIR, SEM, DSC, and AFM analyses were some of the different techniques used to confirm that the films were successfully developed. RESULTS: The AM release profile demonstrated regulated release over a period of 24 h in simulated wound media at pH 5.5 and 7.4, with a low initial burst release. The antibacterial activity against gram-negative bacterial strains exhibited substantial effectiveness, with inhibitory zones measuring approximately 20.5 ± 0.1 mm. Additionally, in vitro cytocompatibility assessments demonstrated remarkable cell viability, surpassing 80%, specifically when evaluated against human skin fibroblast (HFF-1) cells. CONCLUSIONS: The exciting findings of this study indicate the promising potential for further development and testing of these hydrogel films, offering effective and controlled antibiotic release to enhance the process of wound healing.

7.
PLoS One ; 18(6): e0286668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37294790

RESUMEN

Biopharmaceutical classification systems (BCS) class III drugs belongs to a group of drugs with high solubility in gastrointestinal (GI) fluids and low membrane permeability result in significantly low bioavailability. Self-emulsifying drug delivery systems (SEDDS) considered a suitable candidate to enhance the bioavailability of poorly soluble drugs by improving their membrane permeability, however, incorporating hydrophilic drugs in to these carriers remained a great challenge. The aim of this study was to develop hydrophobic ion pairs (HIPs) of a model BCS class-III drug tobramycin (TOB) in order to incorporate into SEDDS and improve its bioavailability. HIPs of TOB were formulated using anionic surfactants sodium docusate (DOC) and sodium dodecanoate (DOD). The efficiency of HIPs was estimated by measuring the concentration of formed complexes in water, zeta potential determination and log P value evaluation. Solubility studies of HIPs of TOB with DOC were accomplished to screen the suitable excipients for SEDDS development. Consequently, HIPs of TOB with DOC were loaded into SEDDS and assessed the log DSEDDS/release medium and dissociation of these complexes at different intestinal pH over time. Moreover, cytotoxic potential of HIPs of TOB and HIPs loaded SEDDS formulations was evaluated. HIPs of TOB with DOC exhibited the maximum precipitation efficiency at a stoichiometric ratio of 1:5. Log P of HIPs of TOB improved up to 1500-fold compared to free TOB. Zeta potential of TOB was shifted from positive to negative during hydrophobic ion pairing (HIP). HIPs of TOB with DOC was loaded at a concentration of 1% (w/v) into SEDDS formulations. Log DSEDDS/release medium of loaded complexes in to oily droplets was above 2 and dissociated up to 20% at various pH within 4 h. Finding of this study suggested that improvement of the lipophilic character of BCS class-III drugs followed by incorporation into oily droplets can be deliberated as a promising tool to enhance the permeation across biological membranes.


Asunto(s)
Productos Biológicos , Emulsiones/química , Sistemas de Liberación de Medicamentos , Tensoactivos/química , Ácido Dioctil Sulfosuccínico/química , Disponibilidad Biológica , Solubilidad , Administración Oral
8.
ACS Omega ; 8(10): 9662-9672, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936332

RESUMEN

Most biopharmaceutics classification system (BCS) class IV drugs have limited oral bioavailability due to poor solubility and poorer permeability. This work aims to investigate the possibility of utilizing disulfide bridged nanoparticles to improve BCS IV drug solubility and oral absorption. Disulfide bridged nanoparticles were made using thiolated sodium alginate (TSA) and thiolated eudragit RS100 (TERS100). This study used paclitaxel (PTL) as a model drug to create PTL-loaded nanoparticles using the air oxidation approach. PTL-loaded nanoparticles boosted the solubility of PTL by over 11 times (∼59 µg/mL). The nanoparticles had particle sizes of 103 nm, polydispersity indices of 0.034, and zeta potentials of -21 mV, respectively. Nanoparticles demonstrated 75.34% and 89.18% entrapment and loading efficiency of PTL, respectively. The PTL release data from nanoparticles had good sustained release properties. The effective permeability of PTL from nanoparticles was 2.19-fold higher than that of pure PTL suspension. The relative bioavailability of PTL with disulfide bridged nanoparticles was 237.11%, which was much higher than that of PTL suspension, according to the pharmacokinetic data. These results show that disulfide bridged nanoparticles have a wide range of clinical applications.

9.
Drug Deliv ; 29(1): 3233-3244, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36299245

RESUMEN

Cutaneous burn wounds are a common and troublesome critical issue of public health. Over the last decade, many researchers have investigated the development of novel therapeutic modalities which are capable of fully regeneration and reinstatement of structure and function of the skin with no or limited scar formation. Novel pharmaceutical carriers are offering a potential platform to deliver the drug effectively and to overcome the limitation associated with conventional wound dressings. The aim of this study was to investigate a pharmaceutical acriflavine-loaded polycaprolactone nanoemulsion (ACR-PCL-NE) for burn wound healing. Nanoemulsion was prepared by using the double emulsion solvent evaporation technique and it was subjected to thermodynamic stability testing, droplet size, polydispersity, zeta potential, pH, and surface morphology analysis. The in vivo study was performed to evaluate the efficacy of nanoemulsion using Sprague-Dawley rats as an animal model. The results of this study revealed that the optimized nanoemulsion was stable and had desirable physicochemical properties. The pH was about 4.02 at 25 °C and the particle size was found to be in the range of 302 ± 4.62 nm while the zeta potential was -7.8 ± 1.22 mV and the polydispersity index of 0.221 ± 0.017. The wound regeneration process was evaluated in vivo by different techniques, the formulation group (FG) showed high wound healing potential as compared to the standard group (SD) and control group (CG). These findings reveal that this nanoemulsion formulation can be used effectively for wound healing.


Asunto(s)
Acriflavina , Quemaduras , Ratas , Animales , Emulsiones/química , Acriflavina/farmacología , Ratas Sprague-Dawley , Cicatrización de Heridas , Tamaño de la Partícula , Quemaduras/tratamiento farmacológico , Solventes
10.
Microorganisms ; 10(6)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35744690

RESUMEN

We developed alginate-based floating microbeads of clarithromycin with therapeutic oils for the possible eradication of Helicobacter pylori (H. pylori) infections by enhancing the residence time of the carrier at the site of infection. In pursuit of this endeavor, the alginate was blended with hydroxy propyl methyl cellulose (HPMC) as an interpenetrating polymer to develop beads by ionotropic gelation using calcium carbonate as a gas generating agent. The developed microbeads remained buoyant under gastric conditions for 24 h. These microbeads initially swelled and afterwards decreased in size, possibly due to the erosion of the polymer. Furthermore, swelling was also affected by the type of encapsulated oil, i.e., swelling decreased with increasing concentrations of eucalyptus oil and increased with increasing concentrations of oleic acid. Antibacterial assays of the formulations showed significant antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli); these assays also showed synergistic activity between clarithromycin and therapeutic oils as evident from the higher zone of inhibition of the microbeads as compared to the pure drug and oils. Scanning electron microscopy (SEM) images revealed a smoother surface for oleic acid containing the formulation as compared to eucalyptus oil containing the formulation. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed the development of a stable formulation, while Fourier transform infrared spectrophotometry (FTIR) studies did not reveal any interaction between the polymers and the active ingredients. Optimized formulations (CLM3 and CLM6) were designed to release the drug in a controlled manner in gastric media by Fickian diffusion. Conclusively, the developed microbeads are a promising carrier to overcome the narrow therapeutic index and low bioavailability of clarithromycin, while the presence of therapeutic oils will produce synergistic effects with the drug to eradicate infection effectively.

11.
Molecules ; 27(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35566287

RESUMEN

The occurrence of fungal infections has increased over the past two decades. It is observed that superficial fungal infections are treated by conventional dosage forms, which are incapable of treating deep infections due to the barrier activity possessed by the stratum corneum of the skin. This is why the need for a topical preparation with advanced penetration techniques has arisen. This research aimed to encapsulate fluconazole (FLZ) in a novasome in order to improve the topical delivery. The novasomes were prepared using the ethanol injection technique and characterized for percent entrapment efficiency (EE), particle size (PS), zeta potential (ZP), drug release, Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and antifungal activity. The FN7 formulation with 94.45% EE, 110 nm PS and -24 ZP proved to be the best formulation. The FN7 formulation showed a 96% release of FLZ in 8 h. FTIR showed the compatibility of FLZ with excipients and DSC studies confirmed the thermal stability of FLZ in the developed formulation. The FN7 formulation showed superior inhibition of the growth of Candida albicans compared to the FLZ suspension using a resazurin reduction assay, suggesting high efficacy in inhibiting fungal growth.


Asunto(s)
Fluconazol , Micosis , Antifúngicos/uso terapéutico , Candida albicans , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Fluconazol/química , Fluconazol/farmacología , Micosis/tratamiento farmacológico , Tamaño de la Partícula
12.
J Pain Res ; 15: 1203-1219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502403

RESUMEN

Background: Nature represents a basic source of medicinal scaffolds that can develop into potent drugs used in the treatment of many diseases. Aim: The present study was planned to evaluate the combined effects of polyherbal methanolic extract of the herbs (fruit of capsicum, bark of cinnamon, rhizome of turmeric and rhizome of ginger) that were individually well known for their analgesic and anti-inflammatory activities. Furthermore, we aimed to develop hydrogel formulation of this polyherbal extract and to characterize and evaluate its analgesic and anti-inflammatory potential. Materials and Methods: Zingiber officinale (R.), Capsicum annuum (L.), Curcuma longa (L.), and Cinnamomum verum (J.) polyherbal extract (GCTC) was prepared by maceration and evaluated for analgesic and anti-inflammatory potential. Then, two different types of hydrogel formulation were prepared. One is pH-based hydrogel in which carbopol-940 was used and the other is temperature-based gel in which methocel-K100 was used as gelling agent. Different concentrations of polyherbal extract (GCTC), at 1%, 3% and 5%, were used in hydrogel formulation. These prepared hydrogel formulations were characterized and evaluated for analgesic and anti-inflammatory potential. Results: Results show that polyherbal extract and all the developed formulations of polyherbal extract (GCTC), at concentrations of 1%, 3% and 5%, have significant analgesic and anti-inflammatory effects with good appearance, homogeneity, spreadability, extrudability and stability. Conclusion: It was concluded from this project that polyherbal extract (GCTC) and its hydrogel have significant analgesic and anti-inflammatory potential.

13.
Pharmaceutics ; 14(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35335860

RESUMEN

The purpose of the study was to develop an SNEDDS to improve the solubility and bioavailability of pitavastatin. The solubility of pitavastatin in different oils, surfactants, and co-surfactants was determined and a pseudo-ternary phase diagram was constructed. The SNEDDS was characterized by zeta-sizer, zeta-potential, FTIR, DSC, and TGA. Release and permeation of pitavastatin from the SNEDDS was studied for 12 and 24 h, respectively. The lipolysis test, RBC lysis, effect on lipid profile, and pharmacokinetics were studied. The SPC3 formulation showed a 104 ± 1.50 nm particle size, a 0.198 polydispersity index (PDI), and a -29 zeta potential. FTIR, DSC, and TGA showed the chemical compatibility and thermal stability. The release and permeation of pitavastatin from SPC3 was 88.5 ± 2.5% and 96%, respectively. In the lipolysis test, the digestion of SPC3 yielded a high amount of pitavastatin and showed little RBC lysis. The lipid profile suggested that after 35 days of administration of the SNEDDS, there was a marked decrease in TC, LDL, and triglyceride levels. The SNEDDS of SPC3 showed an 86% viability of Caco-2 cells. Pharmacokinetics of SPC3 showed improved values of Cmax, Tmax, half-life, MRT, AUC, and AUMC compared to the reference formulation. Our study demonstrated that the SNEDDS effectively enhanced the solubility and bioavailability of a BCS class II drug.

14.
Drug Deliv ; 29(1): 600-612, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35174738

RESUMEN

In this article, formulation studies for terbinafine hydrochloride nanoemulsions, prepared by high-energy ultrasonication technique, are described. Pseudo-ternary phase diagram was constructed in order to find out the optimal ratios of oil and surfactant/co-solvent mixture for nanoemulsion production. Clove and olive oils were selected as oil phase. Based on the droplet size evaluation, maximum nanoemulsion region were determined for formulation development. Further characterization included polydispersity index (PDI), zeta potential, Fourier transform infrared (FT-IR) spectroscopy, morphology, pH, viscosity, refractive index, ex vivo skin permeation, skin irritation, and histopathological examination. Droplet sizes of optimized formulations were in colloidal range. PDI values below 0.35 indicated considerably homogeneous nanoemulsions. Zeta potential values were from 13.2 to 18.1 mV indicating good stability, which was also confirmed by dispersion stability studies. Ex vivo permeation studies revealed almost total skin permeation of terbinafine hydrochloride from the nanoemulsions (96-98%) in 6 hours whereas commercial product reached only 57% permeation at the same time. Maximum drug amounts were seen in epidermis and dermis layers. Skin irritation and histopathological examination demonstrated dermatologically safe formulations. In conclusion, olive oil and clove oil-based nanoemulsion systems have potential to serve as promising carriers for topical terbinafine hydrochloride delivery.


Asunto(s)
Antifúngicos/farmacología , Aceite de Clavo/química , Nanopartículas/química , Aceite de Oliva/química , Terbinafina/farmacología , Administración Tópica , Animales , Antifúngicos/administración & dosificación , Antifúngicos/efectos adversos , Antifúngicos/farmacocinética , Química Farmacéutica , Portadores de Fármacos , Emulsiones/química , Concentración de Iones de Hidrógeno , Ratones , Tamaño de la Partícula , Absorción Cutánea/efectos de los fármacos , Solubilidad , Propiedades de Superficie , Terbinafina/administración & dosificación , Terbinafina/efectos adversos , Terbinafina/farmacocinética , Viscosidad
15.
J Microencapsul ; 39(1): 37-48, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34919007

RESUMEN

AIM: This work aims to formulate topical hybrid gel containing chitosan-coated moxifloxacin (MXF) HCl nanoparticles (NPs) with enhanced antibacterial and healing activity. METHODS: MXF HCl NPs prepared by the ionic gelation method were loaded onto a hybrid chitosan carbomer gel. Size analysis of the prepared NPs was performed using SEM and Zeta-sizer. Further characterisation was done using Fourier transforms infra-red spectroscopy (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TGA). Prepared gel was evaluated for its in vitro drug release, biocompatibility, antibacterial activity, and stability studies under storage conditions. In-vivo wound healing was measured by observing percentage reduction in wound. RESULTS: NPs have 359 ± 79 nm mean particle size, 31.01 mV zeta potential with 0.008 polydispersity index (PD1), 63.5% drug entrapment and 83 ± 3.5% drug release at pH 5.5. Hybrid chitosan carbomer gel showed good biocompatibility, antibacterial, in-vivo wound healing properties and stable properties. CONCLUSIONS: NP-loaded hybrid gel can be an effective treatment for acute and challenged topical wounds.


Asunto(s)
Quitosano , Nanopartículas , Antibacterianos/farmacología , Portadores de Fármacos , Liberación de Fármacos , Moxifloxacino , Tamaño de la Partícula , Cicatrización de Heridas
16.
Biomed Res Int ; 2021: 3849093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722762

RESUMEN

The development and optimization of controlled release lipospheres (LS) from safe biocompatible behenic acid (BA) was performed for not only enhancing patient's compliance against highly prevailed chronic diabetes but also to vanquish the insufficiencies of traditional methods of drug delivery. The Box-Bhenken design (BBD) was utilized to statistically investigate the impact of formulation variables on percentage yield (Y 1), entrapment efficiency (Y 2), and SG-release (Y 3) from saxagliptin- (SG-) loaded LS, and the chosen optimized LS were subjected to a comparative in vivo pharmacokinetic analysis against commercially available SG brand. The compatibility analysis performed by DSC and FTIR established a complete lack of interaction of formulation components with SG, while p-XRD suggested a mild transformation of crystalline drug to its amorphous form during encapsulation process. The spherical, free flowing smooth surface LS having zeta potential of -32 mV and size range of 11-20 µm were conveniently formulated. The obtained data for Y 1 (30-80%), Y 2 (30-70%), and Y 3 (40-90%) showed a best fit with quadratic model. The pharmacokinetics analysis of LS showed a significantly decreased C max of SG (75.63 ± 3.85) with a sufficiently elevated T max (10.53 h) as compared to commercial brand of SG (99.66 ± 2.97 ng/mL and 3.55 ± 2.18 h). The achievement of greater bioavailability of SG was most probably attributed to higher level of half-life, mean residence time (MRT), and AUC0-24 for SG released from LS. Conclusively, the novel approach of SG-loaded LS had successfully sustained the plasma SG level for a prolonged time without increasing C max which would ultimately bring an effective management of chronic diabetes.


Asunto(s)
Adamantano/análogos & derivados , Dipéptidos/administración & dosificación , Liposomas/farmacocinética , Adamantano/administración & dosificación , Adamantano/farmacocinética , Adamantano/farmacología , Administración Oral , Adulto , Disponibilidad Biológica , Preparaciones de Acción Retardada/farmacocinética , Dipéptidos/farmacocinética , Dipéptidos/farmacología , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/fisiología , Ácidos Grasos/farmacocinética , Ácidos Grasos/farmacología , Semivida , Voluntarios Sanos , Humanos , Liposomas/farmacología , Masculino , Modelos Estadísticos , Solubilidad
17.
Pharmaceutics ; 13(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452276

RESUMEN

The main objective of this research work was the development and evaluation of transfersomes integrated oral films for the bioavailability enhancement of Ebastine (EBT) to treat allergic rhinitis. The flexible transfersomes, consisting of drug (EBT), lipid (Phosphatidylcholine) and edge activator (EA) Polyoxyethylene sorbitan monooleate or Sorbitan monolaurate, were prepared with the conventional thin film hydration method. The developed transfersomes were further integrated into oral films using the solvent casting method. Transfersomes were evaluated for their size distribution, surface charge, entrapment efficiency (EE%) and relative deformability, whereas the formulated oral films were characterized for weight, thickness, pH, folding endurance, tensile strength, % of elongation, degree of crystallinity, water content, content uniformity, in vitro drug release and ex vivo permeation, as well as in vivo pharmacokinetic and pharmacodynamics profile. The mean hydrodynamic diameter of transfersomes was detected to be 75.87 ± 0.55 nm with an average PDI and zeta potential of 0.089 ± 0.01 and 33.5 ± 0.39 mV, respectively. The highest deformability of transfersomes of 18.52 mg/s was observed in the VS-3 formulation. The average entrapment efficiency of the transfersomes was about 95.15 ± 1.4%. Transfersomal oral films were found smooth with an average weight, thickness and tensile strength of 174.72 ± 2.3 mg, 0.313 ± 0.03 mm and 36.4 ± 1.1 MPa, respectively. The folding endurance, pH and elongation were found 132 ± 1, 6.8 ± 0.2 and 10.03 ± 0.4%, respectively. The ex vivo permeability of EBT from formulation ETF-5 was found to be approximately 2.86 folds higher than the pure drug and 1.81 folds higher than plain film (i.e., without loaded transfersomes). The relative oral bioavailability of ETF-5 was 2.95- and 1.7-fold higher than that of EBT-suspension and plain film, respectively. In addition, ETF-5 suppressed the wheal and flare completely within 24 h. Based on the physicochemical considerations, as well as in vitro and in vivo characterizations, it is concluded that the highly flexible transfersomal oral films (TOFs) effectively improved the bioavailability and antihistamine activity of EBT.

18.
Des Monomers Polym ; 24(1): 240-258, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434070

RESUMEN

In the current research, attempt is made to fabricate a nanoemulsion (NE) containing an antifungal agent. The prepared formulation has been expected to enhance skin penetration. It is also studied for in vitro drug release and toxicity assessment. Spontaneous titration method was used for preparation of NE. Prepared NE were characterized for their charge, size, morphology, rheological behaviour, drug release profile, skin permeability. The drug permeation and skin irritation were investigated. The in vitro antifungal activity was inspected using the well agar diffusion method. Miconazole NE showed good penetration in the skin as compared to marketed products. SEM showed semispherical shapes of the droplets. Zeta potential and zeta sizer showed that size was in nano ranges having positive charge.

19.
Pak J Pharm Sci ; 34(1): 185-196, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34248019

RESUMEN

The role of nanobiotechnology in the treatment of diseases is limitless. In this review we tried to focus main aspects of nanotechnology in drug carrier systems for treatment and diagnosis of various diseases such as cancer, pulmonary diseases, infectious diseases, vaccine development, diabetes mellitus and the role of nanotechnology on our economy and its positive social impacts on our community. We discussed here about the different "Biotechnano Strategies" to develop new avenues and ultimately improve the treatment of multiple diseases.


Asunto(s)
Biotecnología/tendencias , Portadores de Fármacos/administración & dosificación , Nanotecnología/tendencias , Desarrollo de Vacunas/tendencias , Animales , Biotecnología/economía , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/economía , Portadores de Fármacos/economía , Humanos , Nanotecnología/economía , Neoplasias/tratamiento farmacológico , Neoplasias/economía , Desarrollo de Vacunas/economía
20.
Pak J Pharm Sci ; 34(1(Supplementary)): 313-319, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34275856

RESUMEN

Cyclosporine A (CsA) is an immunosuppressant agent. Two niosomal formulations of CsA, FTS and FSB were formulated. Both formulations were studied in terms of size, polydispersity index (PDI), morphology and entrapment efficacy etc. Niosomal formulations FTS and FSB and plain aqueous dispersion were given to three assemblies of Albino rabbits (n=8 per group). CsA levels in plasma were determined at appropriate time intervals and pharmacokinetic parameters were evaluated. The percentage entrapment efficiencies of FTS and FSB were found to be 77.29 and 89.31% for respectively. Transmission electron microscopy results indicated spherical nature of niosomes. In vivo studies demonstrated that the value of Cmax for the FSB formulation was 1968.419 ng/ml and it was 1498.951 ng/ml and 1073.87 ng/ml for FTS and aqueous dispersion of CsA (control) respectively. It was found that both niosomal formulation FTS & FSB presented significantly high (p<0.05) Cmax, AUC0-t, MRT 0-inf and half-life (t1/2) as associated to plain drug dispersion. However niosomal formulation FSB exhibited better in-vivo performance as compared to FTS. It was established that CsA can be successfully entrapped in niosomes. So niosomes are promising vehicle for CsA oral delivery.


Asunto(s)
Ciclosporina/administración & dosificación , Ciclosporina/farmacocinética , Inmunosupresores/administración & dosificación , Inmunosupresores/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Portadores de Fármacos , Composición de Medicamentos , Liposomas , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...