Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Brain Dev ; 46(4): 167-179, 2024 Apr.
Article En | MEDLINE | ID: mdl-38129218

OBJECTIVE: Mitochondrial leukodystrophies (MLs) are mainly caused by impairments of the mitochondrial respiratory chains. This study reports the mutation and phenotypic spectrum of a cohort of 41 pediatric patients from 39 distinct families with MLs among 320 patients with a molecular diagnosis of leukodystrophies. METHODS: This study summarizes the clinical, imaging, and molecular data of these patients for five years. RESULTS: The three most common symptoms were neurologic regression (58.5%), pyramidal signs (58.5%), and extrapyramidal signs (43.9%). Because nuclear DNA mutations are responsible for a high percentage of pediatric MLs, whole exome sequencing was performed on all patients. In total, 39 homozygous variants were detected. Additionally, two previously reported mtDNA variants were identified with different levels of heteroplasmy in two patients. Among 41 mutant alleles, 33 (80.4%) were missense, 4 (9.8%) were frameshift (including 3 deletions and one duplication), and 4 (9.8%) were splicing mutations. Oxidative phosphorylation in 27 cases (65.8%) and mtDNA maintenance pathways in 8 patients (19.5%) were the most commonly affected mitochondrial pathways. In total, 5 novel variants in PDSS1, NDUFB9, FXBL4, SURF1, and NDUSF1 were also detected. In silico analyses showed how each novel variant may contribute to ML pathogenesis. CONCLUSIONS: The findings of this study suggest whole-exome sequencing as a strong diagnostic genetic tool to identify the causative variants in pediatric MLs. In comparison between oxidative phosphorylation (OXPHOS) and mtDNA maintenance groups, brain stem and periaqueductal gray matter (PAGM) involvement were more commonly seen in OXPHOS group (P value of 0.002 and 0.009, respectively), and thinning of corpus callosum was observed more frequently in mtDNA maintenance group (P value of 0.042).


DNA, Mitochondrial , Mitochondria , Child , Humans , DNA, Mitochondrial/genetics , Mutation/genetics , Corpus Callosum
3.
Neurogenetics ; 24(4): 279-289, 2023 Oct.
Article En | MEDLINE | ID: mdl-37597066

Leukodystrophies (LDs) are a heterogeneous group of progressive neurological disorders and characterized by primary involvement of white matter of the central nervous system (CNS). This is the first report of the Iranian LD Registry database to describe the clinical, radiological, and genomic data of Persian patients with leukodystrophies. From 2016 to 2019, patients suspicious of LDs were examined followed by a brain magnetic resonance imaging (MRI). A single gene testing or whole-exome sequencing (WES) was used depending on the neuroradiologic phenotypes. In a few cases, the diagnosis was made by metabolic studies. Based on the MRI pattern, diagnosed patients were divided into cohorts A (hypomyelinating LDs) versus cohort B (Other LDs). The most recent LD classification was utilized for classification of diagnosed patients. For novel variants, in silico analyses were performed to verify their pathogenicity. Out of 680 registered patients, 342 completed the diagnostic evaluations. In total, 245 patients met a diagnosis which in turn 24.5% were categorized in cohort A and the remaining in cohort B. Genetic tests revealed causal variants in 228 patients consisting of 213 variants in 110 genes with 78 novel variants. WES and single gene testing identified a causal variant in 65.5% and 34.5% cases, respectively. The total diagnostic rate of WES was 60.7%. Lysosomal disorders (27.3%; GM2-gangliosidosis-9.8%, MLD-6.1%, KD-4.5%), amino and organic acid disorders (17.15%; Canavan disease-4.5%, L-2-HGA-3.6%), mitochondrial leukodystrophies (12.6%), ion and water homeostasis disorders (7.3%; MLC-4.5%), peroxisomal disorders (6.5%; X-ALD-3.6%), and myelin protein disorders (3.6%; PMLD-3.6%) were the most commonly diagnosed disorders. Thirty-seven percent of cases had a pathogenic variant in nine genes (ARSA, HEXA, ASPA, MLC1, GALC, GJC2, ABCD1, L2HGDH, GCDH). This study highlights the most common types as well as the genetic heterogeneity of LDs in Iranian children.


Demyelinating Diseases , Neurodegenerative Diseases , Humans , Child , Iran , Genetic Heterogeneity , Magnetic Resonance Imaging , Brain , Alcohol Oxidoreductases
4.
Ital J Pediatr ; 49(1): 64, 2023 Jun 06.
Article En | MEDLINE | ID: mdl-37280710

BACKGROUND: Spinal muscular atrophy (SMA) could be classified as 5q and non-5q, based on the chromosomal location of causative genes. A rare form of non-5q SMA is an autosomal-recessive condition called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME), phenotypically characterized by myoclonic and generalized seizures with progressive neurological deterioration. SMA-PME is a clinically heterogeneous disorder that arises from biallelic pathogenic variants in ASAH1 gene. METHODS: Following clinical and primary laboratory assessments, whole-exome sequencing was performed to detect the disease-causing variants in three cases of SMA-PME from different families. Also, Multiplex ligation-dependent probe amplification (MLPA) was employed for determining the copy numbers of SMN1 and SMN2 genes to rule out 5q SMA. RESULTS: Exome sequencing revealed two different homozygous missense mutations (c.109 C > A [p.Pro37Thr] or c.125 C > T [p.Thr42Met]) in exon 2 of the ASAH1 gene in the affected members of the families. Sanger sequencing of the other family members showed the expected heterozygous carriers. In addition, no clinically relevant variant was identified in patients by MLPA. CONCLUSION: This study describes two different ASAH1 mutations and the clinical picture of 3 SMA-PME patients. In addition, previously reported mutations have been reviewed. This study could help to fortify the database of this rare disease with more clinical and genomic data.


Muscular Atrophy, Spinal , Myoclonic Epilepsies, Progressive , Humans , Mutation , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Myoclonic Epilepsies, Progressive/genetics , Mutation, Missense
5.
J Neuromuscul Dis ; 10(2): 211-225, 2023.
Article En | MEDLINE | ID: mdl-36776076

BACKGROUND: Insufficient amounts of survival motor neuron protein is leading to one of the most disabling neuromuscular diseases, spinal muscular atrophy (SMA). Before the current study, the detailed characteristics of Iranian patients with SMA had not been determined. OBJECTIVE: To describe the key demographic, clinical, and genetic characteristics of patients with SMA registered in the Iranian Registry of SMA (IRSMA). METHODS: IRSMA has been established since 2018, and the demographic, clinical, and genetic characteristics of patients with SMA were recorded according to the methods of treat neuromuscular disease (TREAT-NMD) project. RESULTS: By October 1, 2022, 781 patients with 5q SMA were registered. Of them, 164 patients died, the majority of them had SMA type 1 and died during the first 20 months of life. The median survival of patients with type 1 SMA was 23 months. The consanguinity rate in 617 alive patients was 52.4%, while merely 24.8% of them had a positive family history. The most common type of SMA in live patients was type 3. Morbidities were defined as having scoliosis (44.1%), wheelchair dependency (36.8%), tube feeding (8.1%), and requiring mechanical ventilation (9.9%). Most of the registered patients had a homozygous deletion of SMN1, while the frequency of patients with higher copy numbers of SMN2, was less in more severe types of the disease. Earlier onset of the disease was significantly seen in patients with lower copy numbers of SMN2. The neuronal apoptosis inhibitory protein (NAIP) gene deletion was associated with a higher incidence of more severe types of SMA, higher dependency on ventilators, tube feeding, and earlier onset of the disease. CONCLUSIONS: The IRSMA is the first established Iranian nationwide registry of patients with SMA. Using this registry, decision-makers, researchers, and practitioners can precisely understand the epidemiology, characteristics, and genetics of patients with SMA in Iran.


Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Humans , Iran , Homozygote , Sequence Deletion , Muscular Atrophy, Spinal/genetics , Spinal Muscular Atrophies of Childhood/genetics , Registries
6.
Neurogenetics ; 24(2): 67-78, 2023 04.
Article En | MEDLINE | ID: mdl-36633690

Guanidinoacetate methyltransferase deficiency (GAMTD) is a treatable neurodevelopmental disorder with normal or nonspecific imaging findings. Here, we reported a 14-month-old girl with GAMTD and novel findings on brain magnetic resonance imaging (MRI).A 14-||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||month-old female patient was referred to Myelin Disorders Clinic due to onset of seizures and developmental regression following routine vaccination at 4 months of age. Brain MRI, prior to initiation of treatment, showed high signal intensity in T2-weighted imaging in bilateral thalami, globus pallidus, subthalamic nuclei, substantia nigra, dentate nuclei, central tegmental tracts in the brainstem, and posterior periventricular white matter which was masquerading for mitochondrial leukodystrophy. Basic metabolic tests were normal except for low urine creatinine; however, exome sequencing identified a homozygous frameshift deletion variant [NM_000156: c.491del; (p.Gly164AlafsTer14)] in the GAMT. Biallelic pathogenic or likely pathogenic variants cause GAMTD. We confirmed the homozygous state for this variant in the proband, as well as the heterozygote state in the parents by Sanger sequencing.MRI features in GAMTD can mimic mitochondrial leukodystrophy. Pediatric neurologists should be aware of variable MRI findings in GAMTD since they would be misleading to other diagnoses.


Language Development Disorders , Movement Disorders , Child , Humans , Female , Infant , Iran , Language Development Disorders/genetics , Language Development Disorders/diagnosis , Language Development Disorders/metabolism , Guanidinoacetate N-Methyltransferase/metabolism , Neuroimaging
7.
Clin Case Rep ; 10(4): e05777, 2022 Apr.
Article En | MEDLINE | ID: mdl-35474986

Autosomal recessive cerebellar ataxias are a group of heterogeneous early-onset progressive disorders that some of them are treatable. We performed a 4-year follow-up for 25 patients who had treatable ataxia. According to our study, patients would benefit from early detection of treatable ataxia, close observation, and follow-up.

8.
Ir J Med Sci ; 191(6): 2733-2741, 2022 Dec.
Article En | MEDLINE | ID: mdl-35031939

BACKGROUND: Microcephaly is a prominent feature of patients with primary autosomal recessive microcephaly 2 (MCPH2) caused by mutations in the WD Repeat Domain 62 (WDR62; OMIM: 613,583). AIM: The study aimed to identify the underlying genetic factor(s) causing microcephaly in two patients in a consanguineous Iranian family. METHODS: Two male patients (11 and 27 years old) were noticed due to microcephaly, neurodevelopmental delay, and occasional seizures. The younger patient (the proband) was subjected to paired-end whole-exome sequencing followed by Sanger sequencing to detect any underlying genetic factor. RESULTS: Upon examination, both patients showed microcephaly as a prominent manifestation; they were under-weighted as well. The patients had a moderate gross motor impairment, severe cognitive disability and speech delay, increased deep tendon reflexes, flexible joint contractures, sensorineural hearing loss, and vertical nystagmus as a new ocular finding. The proband had more severe neurodevelopmental delay symptoms. The brain magnetic resonance imaging series revealed severe structural and cortical brain abnormalities in addition to hemiatrophy. Using Whole-exome Sequencing, a novel homozygous missense variant-NM_001083961.2; c.1598A > G: p.(His533Arg)-was identified in the WDR62. Subsequently, in silico analyses determined the possible impacts of the novel variant on the structure and function of WDR62 protein. CONCLUSIONS: Herein, we identified a novel homozygous missense variant in the WDR62 in two patients with MCPH2. Vertical nystagmus and sensorineural hearing loss were detected as novel neurological findings. The present study expands the phenotype and genotype spectrum of MCPH2.


Hearing Loss, Sensorineural , Microcephaly , Nystagmus, Pathologic , Humans , Male , Cell Cycle Proteins/genetics , Genotype , Iran , Microcephaly/complications , Microcephaly/diagnostic imaging , Microcephaly/genetics , Mutation , Nerve Tissue Proteins/genetics , Pedigree , Phenotype , Child , Young Adult , Adult
9.
Hum Genomics ; 15(1): 45, 2021 07 19.
Article En | MEDLINE | ID: mdl-34281620

BACKGROUND: Leukodystrophies are the main subgroup of inherited CNS white matter disorders which cause significant mortality and morbidity in early years of life. Diagnosis is mostly based on clinical context and neuroimaging findings; however, genetic tools, particularly whole-exome sequencing (WES), have led to comprehending the causative gene and molecular events contributing to these disorders. Mutation in Alkaline Ceramidase 3 (ACER3) gene which encodes alkaline ceramidase enzyme that plays a crucial role in cellular growth and viability has been stated as an uncommon reason for inherited leukoencephalopathies. Merely only two ACER3 mutations in cases of progressive leukodystrophies have been reported thus far. RESULTS: In the current study, we have identified three novel variants in ACER3 gene in cases with new neurological manifestations including developmental regression, dystonia, and spasticity. The detected variants were segregated into family members. CONCLUSION: Our study expands the clinical, neuroimaging, electroencephalographic, and genetic spectrum of ACER3 mutations. Furthermore, we reviewed and compared the findings of all the previously reported cases and the cases identified here in order to facilitate their diagnosis and management.


Alkaline Ceramidase/genetics , Genetic Predisposition to Disease , Leukoencephalopathies/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/pathology , Magnetic Resonance Imaging , Male , Mutation/genetics , Exome Sequencing , Young Adult
...